Skip to main content

Molecular Basis of Pancreatic Cancer: Strategies for Genetic Diagnosis and Therapy

  • Chapter
Pancreatic Disease
  • 101 Accesses

Abstract

Cancer is essentially a genetic disease, and tumour progression occurs as a multistep process with the accumulation of multiple genetic abnormalities that lead to an unstable malignant genotype. The molecular biology of pancreatic cancer is still poorly understood, though recently significant progress has been made with the identification of at least four genes involved in tumorigenesis. The genetic profile of pancreatic cancer not only involves proto-oncogene activation, and loss of tumour suppressor gene function but also derangement of the signal transduction systems for growth factors and their receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lane D, Benchimol S (1990) p53: oncogene or anti-oncogene? Genes Dev 4:1–8.

    Article  PubMed  CAS  Google Scholar 

  2. Vogelstein B, Kinzler K (1992) p53 function and dysfunction. Cell 70:523–526.

    Article  PubMed  CAS  Google Scholar 

  3. Iggo R, Gatter K, Bartek J, Lane DP, Harris AL (1990) Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335:675–679.

    Article  PubMed  CAS  Google Scholar 

  4. Berrozpe G, Schaeffer J, Peinado MA, Real FX, Perucho M (1994) Comparative analysis of mutations in the p53 and K-ras genes in pancreas cancer. Int J Cancer 58:185–191.

    Article  PubMed  CAS  Google Scholar 

  5. Donehower LA, Harvey M, Slagle BL et al. (1992) Mice deficient for p53 are developmentally normal but are susceptible to spontaneous tumours. Nature 356:215–221.

    Article  PubMed  CAS  Google Scholar 

  6. Taylor WR, Eagan SE, Mowat M, Greenberg AH, Wright JA (1992) Evidence for synergistic interactions between ras, myc and a mutant form of p53 in cellular transformation and tumor dissemination. Oncogene 7:1383–1390.

    PubMed  CAS  Google Scholar 

  7. Zambetti GP, Olsen D, Labrow M, Levine AJ (1992) A mutant p53 protein is required for maintenance of the transformed phenotype in cells transformed with p53 plus ras cDNAs. Proc Natl Acad Sci USA 89:3953–3956.

    Google Scholar 

  8. Kamb A, Gruis NA, Weaver-Feldhaus J et al. (1994) A cell cycle regulator potentially involved in the genesis of many tumor types. Science 264:436–440.

    Article  PubMed  CAS  Google Scholar 

  9. Caldas C, Hahn SA, da Costa LT et al. (1994) Frequent somatic mutations and homozygous deletions of the p 16 (MTS1) gene in pancreatic adenocarcinoma. Nature Genet 8:27–31.

    Article  PubMed  CAS  Google Scholar 

  10. Naumann M, Savitkaia N, Eilert C, Scgramm A, Kalthoff H, Schmiegel W (1996) Frequent codeletions of p16/MTSl and pl5/MTS2 and genetic alterations in p16/MTSl in pancreatic tumours. Gastroenterology 110:1215–1224.

    Article  PubMed  CAS  Google Scholar 

  11. Hussussian CJ, Struewing JP, Goldstein AM et al. (1994) Germline p16 mutations in familial melanoma: Nature Genet 8:15–21.

    PubMed  CAS  Google Scholar 

  12. Kamb A, Shattuck-Eidens D, Eeles R et al. (1994) Analysis of the p16 gene (CDNK2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet 8:23–26.

    Article  PubMed  CAS  Google Scholar 

  13. Hahn SA, Schutte M, Hoque AT et al. (1996) DPC4, a candidate tumour suppressor gene at human chromosome 18q21.1 Science 271:350–353.

    Article  PubMed  CAS  Google Scholar 

  14. Hahn SA, Hoque AT, Moskaluk CA et al. (1996) Homozygous deletion map at 18q21.1 in pancreatic carcinoma. Cancer Res 56:490–494.

    PubMed  CAS  Google Scholar 

  15. Lagna G, Hata A, Hemmati-Brivanlou A, Massague J (1996) Partnership between DPC4 and SMAD proteins in TGF-/3 signalling pathways. Nature 381:561–562.

    Article  Google Scholar 

  16. Massague J (1996) TGF/3 signaling: receptors, transducers and Mad proteins. Cell 85:947–950.

    Article  PubMed  CAS  Google Scholar 

  17. Bos JL (1989) The ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    PubMed  CAS  Google Scholar 

  18. Grunewald R, Lyons J, Frohlich A et al. (1989) High frequency of Ki-ras codon 12 mutation in pancreatic adenocarcinomas. Int J Cancer 43:1037–1041.

    Article  PubMed  CAS  Google Scholar 

  19. Hruban RH, Van Mansfeld ADM, Offerhaus GJ et al. (1993) Kras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reactions, analysis and allele-specific oligonucleotide hybridization. Am J Pathol 143:545–554.

    PubMed  CAS  Google Scholar 

  20. Kalthoff H, Schmiegel W, Roeder C et al. (1993) p53 and K-RAS alterations in pancreatic epithelial cell lesions. Oncogene 8:289–298

    PubMed  CAS  Google Scholar 

  21. Scarpa A, Capelli P, Villanueva A et al. (1994) Pancreatic cancer in Europe: Ki-ras gene mutation pattern shows geographical differences. Int J Cancer 57:167–171.

    Article  PubMed  CAS  Google Scholar 

  22. Simon B, Weinel R, Hohne M et al. (1994) Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic cancer. Gastroenterology 106:1645–1651.

    PubMed  CAS  Google Scholar 

  23. Hohne MW, Halatsch M-E, Kahl GF, Weinel RJ (1992) Frequent loss of expression of the potential tumor suppressor gene DCC in ductal pancreatic adenocarcinoma. Cancer Res 52:2616–2619.

    PubMed  CAS  Google Scholar 

  24. Barton CM, McKie AB, Hogg A et al. (1995) Abnormalities of the RBI and DCC tumor suppressor genes: uncommon in human pancreatic cancer. Mol Carcinogen 13:61–69.

    Article  CAS  Google Scholar 

  25. Wooster R, Neuhausen SL, Mangion J et al. (1994) Localization of a breast cancer susceptibility gene BRCA 2, to chromosome 13ql2–13. Science 265:2088–2090.

    Article  PubMed  CAS  Google Scholar 

  26. Schutte M, da Costa LT, Hahn SA et al. (1995) Identification by representational difference analysis of a homozygous deletion in pancreatic carcinoma that lies within the BRCA2 region. Proc Natl Acad Sci USA 92:5950–5954.

    Google Scholar 

  27. Teng DH, Bogden R, Mitchell J et al. (1996) Low incidence of BRCA2 mutations in breast carcinoma and other cancers. Nature Genet 13:241–244.

    Article  PubMed  CAS  Google Scholar 

  28. Phelan CM, Lancaster JM, Tonin P, et al. (1996) Mutational analysis of the BRCA2 gene in 49 site specific breast cancer families. Nature Genet 13:120–122.

    Article  PubMed  CAS  Google Scholar 

  29. Wooster R, Bignall G, Lancaster J et al. (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792.

    Article  PubMed  CAS  Google Scholar 

  30. Kinzler KW, Nilbert MC, Vogelstein B et al. (1991) Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 251:1366–1370.

    Article  PubMed  CAS  Google Scholar 

  31. Smith KJ, Johnson KA, Bryan TM et al. (1993) The APC gene product in normal and tumor cells. Proc Natl Acad Sci USA 90:2846–2850.

    Google Scholar 

  32. McKie AB, Filipe MI, Lemoine NR (1993) Abnormalities affecting the APC and MCC tumour suppressor gene loci on chromosome 5q occur frequently in gastric cancer but not in pancreatic cancer. Int J Cancer 55:598–603.

    Article  PubMed  CAS  Google Scholar 

  33. Horii A, Nakatsuru S, Miyoshi Y et al. (1992) Frequent somatic mutations of the APC gene in human pancreatic cancer. Cancer Res 52:6696–6698.

    PubMed  CAS  Google Scholar 

  34. Han H-J, Yanagisawa A, Kato Y, Park J-G, Nakamura Y (1993) Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer. Cancer Res 53:5087–5089.

    PubMed  CAS  Google Scholar 

  35. Hahn SA, Seymour AB, Hogue ATMS et al. (1995) Allotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res 55:4670–4675.

    PubMed  CAS  Google Scholar 

  36. Yanagisawa A, Ohtake K, Ohashi K et al. (1993) Frequent c-Ki-ras oncogene activation in mucous cell hyperplasias of pancreas suffering from chronic inflammation. Cancer Res 53:953–956.

    PubMed  CAS  Google Scholar 

  37. DiGiuseppe JA, Hruban RH, Offerhaus GJ, Clement MJ (1994) Detection of K-ras mutations in mucinous pancreatic duct hyperplasia from a patient with a family history of pancreatic cancer. Am J Pathol 144:889–895.

    PubMed  CAS  Google Scholar 

  38. Moskaluk CA, Hruban RH, Keen SE (1997) p16 and Kras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57:2140–2143.

    PubMed  CAS  Google Scholar 

  39. Tada M, Ohashi M, Shiratori Y et al. (1996) Analysis of K-rasgene mutation in hyperplastic duct cells of the pancreas without pancreatic disease. Gastroenterology 110:227–231.

    Article  PubMed  CAS  Google Scholar 

  40. Hicks GG, Egan SE, Greenberg AH, Mowat M (1991) Mutant p53 tumour suppressor alleles release ras-induced cell cycle growth arrest. Mol Cell Biol 11:1344–1352.

    PubMed  CAS  Google Scholar 

  41. Ridley AJ, Paterson HF, Noble M, Land H (1988)ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J 7:1635–1645.

    PubMed  CAS  Google Scholar 

  42. Griffin CA, Hruban RH, Morsberger LA et al. (1995) Consistent chromosome abnormalities in adenocarcinoma of the pancreas. Cancer Res 55:2394–2399.

    PubMed  CAS  Google Scholar 

  43. Forsmark CE, Lambiase L, Vogel SB (1994) Diagnosis of pancreatic cancer and prediction of unresectability using the tumour-associated antigen CA 19–9. Pancreas 9:731–734.

    Article  PubMed  CAS  Google Scholar 

  44. Gentiloni N, Caradonna P, Costamagna G et al. (1995) Pancreatic juice 90K and serum CA19–9 combined determination can discriminate between pancreatic cancer and chronic pancreatitis. Am J Gastroenterol 90:1069–1072.

    PubMed  CAS  Google Scholar 

  45. Von Rosen A, Linder S, Hamemberg V, Wiechel KL (1996) Clinical relevance of tumour markers CA19–9 and CA 50 in sera from patients with pancreatic duct carcinoma. Surg Oncol 1:109–113.

    Article  Google Scholar 

  46. van Es JM, Polak MM, van den Berg FM et al. (1995) Molecular markers for the diagnostic cytology of neoplasms in the head region of the pancreas: mutation of K-ras and overexpression of the p53 protein product. J Clin Pathol 48:218–222.

    Article  PubMed  Google Scholar 

  47. Van Laethem J-L, Vertongen P, Deviere J et al. (1995) Detection of C-Ki-ras gene codon 12 mutations from pancreatic duct brushings in the diagnosis of pancreatic tumours. Gut 36:781–787

    Article  PubMed  Google Scholar 

  48. Caldas C, Hahn SA, Hruban RH, Redston MS, Yeo CJ, Kern SE (1994) Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res 54:3568–3573.

    PubMed  CAS  Google Scholar 

  49. Tada M, Omata M, Kawai S et al. (1993) Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma. Cancer Res 53:2472–2474.

    PubMed  CAS  Google Scholar 

  50. Anker P, Lefort F, Vasioukhin V et al. (1997). K-rasmutations are found in DNA extracted from the plasma of patients with colorectal cancer. Gastroenterology 112:1114–1120.

    Article  PubMed  CAS  Google Scholar 

  51. Marxsen J, Schmiegel W, Roder C et al. (1994) Detection of the anti-p53 antibody-response in malignant and benign pancreatic disease. Br J Cancer 70:1031–1034.

    Article  PubMed  CAS  Google Scholar 

  52. Harris JD, Sikora K (1993) Human genetic therapy. Mol Aspects Med 14:455–546.

    Article  Google Scholar 

  53. Wivel NA, Walters L (1993) Germline gene modification and disease prevention: some medical and ethical perspectives. Science 262:533–538.

    Article  PubMed  CAS  Google Scholar 

  54. Gullick WJ, Handyside A (1994) Pre-implantation diagnosis of inherited predisposition to cancer. Eur J Cancer 30A:2030–2032.

    Article  PubMed  CAS  Google Scholar 

  55. Delhanty JD, Handyside AH, Winston RM (1994) Preimplantation diagnosis. Lancet 343:1569–1570.

    Article  PubMed  CAS  Google Scholar 

  56. Westbrook CA, Chamura SJ, Arenas RB, Kim SY, Otto G (1994) Human APC expression in rodent colonic epithelium in vivo using liposomal gene delivery. Hum Mol Genet 3:2005–2010.

    Article  PubMed  CAS  Google Scholar 

  57. Lynch HT, Fusaro L, Furaso R, Lynch J, Smyrk T (1994) Hereditary pancreatic cancer. Pedigree analysis of pancreatic cancer families. Int J Pancreatol 16:210–214.

    Google Scholar 

  58. Swift M, Sholman L, Perry M, Chase C (1976) Malignant neoplasms in the families of patients with ataxia telangiectasia. Cancer Res 36:209–215.

    PubMed  CAS  Google Scholar 

  59. Takahashi T, Carbone D, Nau MM et al. (1992) Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions. Cancer Res 52: 2340–2343

    PubMed  CAS  Google Scholar 

  60. Cai DW, Mukhopadhyay T, Lui T, Fujiwara T, Roth JA (1993) Stable expression of the wild-type p53 gene in human lung cancer cells after retrovirus-mediated gene transfer. Hum Gene Ther 4:617–624.

    Article  PubMed  CAS  Google Scholar 

  61. Ebert M, Yokoyama M, Kobrin MS, Friess H, Buchler MW, Korc K (1994) Increased MDM2 expression and immunoreactivity in human pancreatic adenocarcinoma. Int J Oncol 5:1279–1284.

    PubMed  CAS  Google Scholar 

  62. Serrano M, Gomez-Lahoz E, DePintro RA, Beach D, Bar-Sagi D (1995) Inhibition of ras-induced proliferation and cellular transformation by p16ink4. Science 267:249–252.

    Article  PubMed  CAS  Google Scholar 

  63. Goyette MC, Cho K, Fasching CL et al. (1992) Progression of colorectal cancer is associated with multiple tumour suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Mol Cell Biol 12:1387–1395.

    PubMed  CAS  Google Scholar 

  64. Vogelstein B, Fearon ER, Kern SE et al. (1989) Allotype of colorectal carcinomas. Science 244:207–211.

    Article  PubMed  CAS  Google Scholar 

  65. Murray J, Crockett N (1992) Antisense techniques: an overview. In: Murray J (ed) Antisense RNA and DNA. Wiley Liss, New York, pp 1–49.

    Google Scholar 

  66. Spinolo J, Iversen P, Smith L et al. (1992) Antisense p53 oligodeoxynucleotide for systemic human anti-leukemic therapy. Hum Gene Ther 3:2A.

    Google Scholar 

  67. James GL, Goldstein JL, Brown MS et al. (1993) Benzodiazepine peptidomimetics: potent inhibitors of ras farnesylation in animal cells. Science 260:1937–1942.

    Article  PubMed  CAS  Google Scholar 

  68. Kohl NE, Mosser SD, deSolmas SJ et al. (1993) Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 260:1934–1937

    Article  PubMed  CAS  Google Scholar 

  69. Kohl NE, Wilson FR, Mosser SD et al. (1994) Protein farnesyltransferase inhibitors block the growth of ras-dependent tumours in nude mice. Proc Natl Acad Sci USA 91:9141–9145.

    Article  PubMed  CAS  Google Scholar 

  70. Carter G, Gilbert C, Lemoine NR (1995) Effects of antisense oligonucleotides targeting the KRAS oncogene in pancreatic cancer cell lines. Int J Oncol 6:1105–1112.

    PubMed  CAS  Google Scholar 

  71. Mikulski SM, Viera A, Darzynkiewicz Z, Shogen K (1992) Synergism between a novel amphibian oocyte ribonuclease and lovastatin in inducing cytostatic and cytotoxic effects in human lung and pancreatic carcinoma cell lines. Br J Cancer 66:304–310.

    Article  PubMed  CAS  Google Scholar 

  72. Sumi S, Beauchamp RD, Townsend CM et al. (1992) Inhibition of pancreatic adenocarcinoma cell growth by lovastatin. Gastroenterology 103:982–989.

    PubMed  CAS  Google Scholar 

  73. Barton CM, Lemoine NR (1995) Antisense oligonucleotides directed against TP53 have antiproliferative effects unrelated to effects on p53 expression. Br J Cancer 71:429–437.

    Article  PubMed  CAS  Google Scholar 

  74. Reid R, Mar E-C, Huang E-S, Topal MD (1988) Insertion and extension of acyclic dideoxy and ara nucleotides by herpesviridae, human α and human β polymerases. A unique inhibition mechanism for 9-(l,3-dihydroxy-2-propoxymethyl) guanine triphosphate. J Biol Chem 263:3898–3904.

    PubMed  CAS  Google Scholar 

  75. Danielsen S, Kilstrup M, Barilla K, Jochimsen B, Neuhard J (1992) Characterization of Escherichia colicodBA operon encoding cytosine permease and cytosine deaminase. Mol Microbiol 6:1334–1344.

    Article  Google Scholar 

  76. Harris JD, Gutierrez AA, Hurst HC, Sikora K, Lemoine NR (1994) Gene therapy for cancer using tumour-specific prodrug activation. Gene Ther 1:170–175.

    PubMed  CAS  Google Scholar 

  77. Di Maio JM, Clary BM, Via DF, Coveney E, Pappas TN, Lyerly HK (1994) Directed enzyme prodrug gene therapy for pancreatic cancer in vivo. Surgery 116:205–213.

    Google Scholar 

  78. Balague C, Gambus G, Carrato C et al. (1994) Altered expression of MUC2, MUC4 and MUC5 mucin genes in pancreas tissue and cancer cell lines. Gastroenterology 106:1054–1061.

    PubMed  CAS  Google Scholar 

  79. Hollingsworth MA, Strawhecker JM, Caffrey TC, Mack DR (1994) Expression of MUC1, MUC3 and MUC4 mucin mRNAs in human pancreatic and intestinal tumour cell lines. Int J Cancer 57:198–203.

    Article  PubMed  CAS  Google Scholar 

  80. Leung HY, Gullick WJ, Lemoine NR (1994) Expression and functional activity of fibroblast growth-factors and their receptors in human pancreatic cancer. Int J Cancer 59:667–675.

    Article  PubMed  CAS  Google Scholar 

  81. Ulmer JB, Donnelly JJ, Parker SE et al. (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 54:1745–1749.

    Article  Google Scholar 

  82. Hawkins RE, Winter G, Hamblin TJ, Stevenson FK, Russel SJ (1993) A genetic approach to idiotypic vaccination. J Immunother 4:273–278.

    Article  Google Scholar 

  83. Stevenson FK, Zhu D, King CA, Ashworth LJ, Kumar S, Thompsett A (1995) A genetic approach to idiotypic vaccination for B cell lymphoma. Ann N Y Acad Sci 772:212–226.

    Article  PubMed  CAS  Google Scholar 

  84. Barnd DL, Lan MS, Metzger RS, Finn OJ (1989) Specific tumour histocompatibility complex-unrestricted recognition of tumour-associated mucins by human cytotoxic cells. Proc Natl Acad Sci USA 86:7159–7163.

    Article  PubMed  CAS  Google Scholar 

  85. Schlichtholz B, Legros Y, Gillet D et al. (1992) The immune response to p53 in breast cancer patients is directed against immunodominant epitopes unrelated to the mutational hotspot. Cancer Res 52:6380–6384.

    PubMed  CAS  Google Scholar 

  86. Gjertsen MK, Bakka A, Breivik J et al. (1995) Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 346:1399–1400.

    Article  PubMed  CAS  Google Scholar 

  87. Gjertsen MK, Bakka A, Breivik J et al. (1996)Ex vivo raspeptide vaccination in patients with advanced pancreatic cancer: results of a phase I/II study. Int J Cancer 65:450–453.

    Article  PubMed  CAS  Google Scholar 

  88. Conry RM, Lobuglio AF, Loechel F et al. (1995) A carcinoembryonic antigen polynucleotide vaccine has in vivoantitumour activity. Gene Ther 2:59–65.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this chapter

Cite this chapter

McCormick, F.C., Lemoine, N.R. (1999). Molecular Basis of Pancreatic Cancer: Strategies for Genetic Diagnosis and Therapy. In: Johnson, C.D., Imrie, C.W. (eds) Pancreatic Disease. Springer, London. https://doi.org/10.1007/978-1-4471-0801-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0801-6_26

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1205-1

  • Online ISBN: 978-1-4471-0801-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics