Radionuclide Studies of the Lung

  • N. D. Greyson


Nuclear medicine studies provide unique functional information based on the localizing properties of specific radiotracers in normal or pathologic processes. These images are complementary to conventional X-ray, computed tomography (CT), magnetic resonance imaging (MRI), and angiography, which offer highly detailed anatomy-based images of the lungs, pleura, and mediastinum. Radionuclide studies are noninvasive, widely available, and quantitative. These tests may obviate the need for interventional techniques such as angiography, biopsy, and bronchial alveolar lavage. They may be used in the detection and staging of malignancy, determining the activity of inflammatory processes, and in monitoring the response to therapy or progression of the disease, in a cost-effective, patient-tolerated manner.


Pulmonary Embolism Idiopathic Pulmonary Fibrosis Perfusion Defect Pneumocystis Carinii Pneumonia Acute Pulmonary Embolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Davis MA, Taube RA (1978) Pulmonary perfusion imaging: Acute toxicity and safety factors as a function of particle size. J Nucl Med 19:1209–1213.Google Scholar
  2. 2.
    Myslivecek M, Husak V, Kolek V, et al. (1992) Absolute quantification of gallium-67 citrate accumulation in the lungs and its importance for the evaluation of disease activity in pulmonary sarcoidosis. Eur J Nucl Med 19:1016–1022.PubMedCrossRefGoogle Scholar
  3. 3.
    Lentle BC, Catz Z, Dierich HC, et al. (1987) Gallium-67 scintigraphy and non-small-cell bronchogenic carcinoma: A quantitative in-vivo predictive assay? Can Med Assoc J 137:815-817.Google Scholar
  4. 4.
    Brown RS, Leung JY, Kison PV, et al. (1999) Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 40:556–565.PubMedGoogle Scholar
  5. 5.
    Kemp PM, Tarver DS, Batty V, et al. (1996) Pulmonary embolism. Is the clinical history a useful adjunct to aid the interpretation of the equivocal scan? Clin Nucl Med 21:203–207.PubMedCrossRefGoogle Scholar
  6. 6.
    van Beek EJ, Reekers JA, Batchelor DA, et al. (1996) Feasibility, safety and clinical utility of angiography in patients with suspected pulmonary embolism. Eur Radiol 6:415–419.PubMedCrossRefGoogle Scholar
  7. 7.
    Garg K, Welsh CH, Feyerabend AJ, et al. (1998) Pulmonary embolism: Diagnosis with spiral CT and ventilation-perfusion scanning — correlation with pulmonary angiographic results or clinical outcome. Radiology 208:201–208.PubMedGoogle Scholar
  8. 8.
    Robinson PJ (1996) Ventilation-perfusion lung scanning and spiral computed tomography of the lungs: Competing or complementary modalities? Eur J Nucl Med 23:1547–1553.PubMedCrossRefGoogle Scholar
  9. 9.
    Goodman LR, Curtin JJ, Mewissen MW, et al. (1995) Detection of pulmonary embolism in patients with unresolved clinical and scintigraphic diagnosis: Helical CT versus angiography. AJR 164:1369–1374.PubMedGoogle Scholar
  10. 10.
    The PIOPED Investigators (1990) Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED). JAMA 263:2753–2759.CrossRefGoogle Scholar
  11. 11.
    Gottschalk A, Sostman HD, Coleman RE, et al. (1993) Ventilation-perfusion scintigraphy in the PIOPED study. Part II.Evaluation of the scintigraphic criteria and interpretations. J Nucl Med 34:1119–1126.PubMedGoogle Scholar
  12. 12.
    Worsley DF, Alavi A (1995) Comprehensive analysis of the results of the PIOPED study. J Nucl Med 36:2380–2387.PubMedGoogle Scholar
  13. 13.
    Miniati M, Pistolesi M, Marini C, et al. (1996) Value of perfusion lung scan in the diagnosis of pulmonary embolism: Results of the prospective investigative study of acute pulmonary embolism diagnosis (PISA-PED). Am J Respir Crit Care Med 154:1387–1393.PubMedGoogle Scholar
  14. 14.
    van Beek EJ, Kuyer PM, Schenk BE, et al. (1995) A normal perfusion lung scan in patients with clinically suspected pulmonary embolism. Frequency and clinical validity. Chest 108:170–173.PubMedCrossRefGoogle Scholar
  15. 15.
    Hull RD, Raskob GE, Coates G, et al. (1990) Clinical validity of a normal perfusion lung scan in patients with suspected pulmonary embolism. Chest 97:23–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Rajendran JG, Jacobson AF (1999) Review of 6-month mortality following low-probability lung scans. Arch Intern Med 159:349–352.PubMedCrossRefGoogle Scholar
  17. 17.
    Freitas JE, Sarosi MG, Nagle CC, et al. (1995) Modified PIOPED criteria used in clinical practice. J Nucl Med 36:1573–1578.PubMedGoogle Scholar
  18. 18.
    Stein PD, Relyea B, Gottschalk A (1996) Evaluation of individual criteria for low probability interpretation of ventilation-perfusion lung scans. J Nucl Med 37:577–581.PubMedGoogle Scholar
  19. 19.
    Freeman L (1996) The low probability V/Q lung scan: Can its credibility be enhanced? (Editorial). J Nucl Med 37:582–584.PubMedGoogle Scholar
  20. 20.
    Worsley DF, Palevsky HI, Alavi A (1994) A detailed evaluation of patients with acute pulmonary embolism and low-or very-low-probability lung scan interpretations. Arch Intern Med 154:2737–2741.PubMedGoogle Scholar
  21. 21.
    Stein PD, Gottschalk A, Henry JW, et al. (1993) Stratification of patients according to prior cardiopulmonary disease and probability assessment based on the number of mismatched segmental equivalent perfusion defects. Approaches to strengthen the diagnostic value of ventilation-perfusion lung scans in acute pulmonary embolism. Chest 104:1461–1467.PubMedCrossRefGoogle Scholar
  22. 22.
    Gray HW, McKillop JH, Bessent RG (1993) Lung scan reports: Interpretation by clinicians. Nucl Med Commun 14:989–994.PubMedCrossRefGoogle Scholar
  23. 23.
    Gray HW, McKillop JH, Bessent RG (1993) Lung scan reporting language. What does it mean? Nucl Med Commun 14:1084–1087.PubMedCrossRefGoogle Scholar
  24. 24.
    Kember PG, Euinton HA, Morcos SK (1997) Clinicians’ interpretation of the indeterminate ventilation — perfusion scan report. Br J Radiol 70:1109–1111.PubMedGoogle Scholar
  25. 25.
    Kaboli P, Buscombe JR, Ell PJ (1993) Reporting ventilation -perfusion lung scintigraphy: Impact on subsequent use of anticoagulation therapy. Postgrad Med J 69:851–855.PubMedCrossRefGoogle Scholar
  26. 26.
    Knight LC (1993) Scintigraphic methods for detecting vascular thrombus. J Nucl Med 34(Suppl3):554–561.PubMedGoogle Scholar
  27. 27.
    Dewanjee MK (1987) Methods of assessment of thrombus in vivo. Ann NY Acad Sei 516:541–571.CrossRefGoogle Scholar
  28. 28.
    Som D, Oster ZH (1994) Thrombus-specific imaging: Approaching the elusive goal. J Nucl Med 35:202–203.PubMedGoogle Scholar
  29. 29.
    Higashi S, Kuniyasu Y (1984) An experimental study of deep-vein thrombosis using 99mTc-fibrinogen. Eur J Nucl Med 9:548–552.PubMedCrossRefGoogle Scholar
  30. 30.
    Smyth JV, Dodd PD, Walker MG (1995) Indium-Ill platelet scintigraphy in vascular disease. Br J Surg 82:588–595.PubMedCrossRefGoogle Scholar
  31. 31.
    Knight LC (1988) Imaging thrombi with radiolabelled fragment El. Nucl Med Commun 9:849–857.PubMedCrossRefGoogle Scholar
  32. 32.
    Lavender JP, Stuttle AW, Peters AM, et al. (1988) In vivo studies with an anti-platelet monoclonal antibody: P256. Nucl Med Commun 9:817–822.PubMedCrossRefGoogle Scholar
  33. 33.
    Lister-James J, Knight LC, Marner AH, et al. (1996) Thrombus imaging with a Technetium-99m-labelled activated platelet receptor-binding peptide. J Nucl Med 37:775–781.PubMedGoogle Scholar
  34. 34.
    Ciavolella M, Tavolaro R, Di Loreto M, et al. (1999) Immuno-scintigraphy of venous thrombi: Clinical effectiveness of a new antifibrin D-dimer monoclonal antibody. Angiology 50:103–109.PubMedCrossRefGoogle Scholar
  35. 35.
    Deacon JM, Ell PJ, Anderson P, et al. (1980) Technetium 99m-plasmin: A new test for the detection of deep vein thrombosis. Br J Radiol 53:673–677.PubMedCrossRefGoogle Scholar
  36. 36.
    Millar WT, Smith JF (1974) Localization of deep-venous thrombosis using technetium-99m-labelled urokinase. Lancet 2:695–696.PubMedCrossRefGoogle Scholar
  37. 37.
    Kempi V, Van Der Linden W, Von Scheele C (1974) Diagnosis of deep vein thrombosis with 99mTc-streptokinase: A clinical comparison with phlebography. Br Med J 4:748–749.PubMedCrossRefGoogle Scholar
  38. 38.
    Kao CH, Lin HT, Yu SL, et al. (1994) Lung inflammation in patients with systemic lupus erythematosus detected by quantitative 67Ga-citrate scanning. Nucl Med Commun 15:928–931.PubMedCrossRefGoogle Scholar
  39. 39.
    Line BR, Fulmer JD, Reynolds HY, et al. (1978) Gallium-67 citrate scanning in the staging of idiopathic pulmonary fibrosis: Correlation with physiological and morphological features and bronchoalveolar lavage. Am Rev Respir Dis 118:355–365.PubMedGoogle Scholar
  40. 40.
    Smith RL, Berkowitz KA, Lewis ML (1992) Pulmonary disposition of gallium-67 in patients with Pneumocystis pneumonia: An analysis using bronchoalveolar lavage. J Nucl Med 33:512–515.PubMedGoogle Scholar
  41. 41.
    Barron T, Birnbbaum N, Shane L, et al. (1987) Pneumocystis carinii pneumonia studied by gallium-67 scanning. Radiology 164:791–793.Google Scholar
  42. 42.
    Katial R, Honeycutt W, Oswald S (1994) Pneumocystis carinii pneumonia presenting as focal bibasilar uptake on galium scan during aerosolized pentamidine prophylaxis. J Nucl Med 35:1038–1040.PubMedGoogle Scholar
  43. 43.
    Kramer EL (1994) PCP, AIDS and nuclear medicine (Editorial). J Nucl Med 35:1034–1037.PubMedGoogle Scholar
  44. 44.
    Abdel-Dayem H, Bag R, DiFabrizio L, et al. (1996) Evaluation of sequential thallium and gallium scans of the chest in AIDS patients. J Nucl Med 37:1662–1667.PubMedGoogle Scholar
  45. 45.
    Turoglu HT, Akisik MF, Naddaf SY, et al. (1998) Tumor and infection localizaton in AIDS patients: Ga-67 and Tl-201 findings. Clin Nucl Med 23:446–459.PubMedCrossRefGoogle Scholar
  46. 46.
    Sulavik SB, Spencer RP, Palestro CJ, et al. (1993) Specificity and sensitivity of distinctive chest radiographic and/or 67Ga images in the noninvasive diagnosis of sarcoidosis. Chest 103:403–409.PubMedCrossRefGoogle Scholar
  47. 47.
    Sulavik SB, Spencer RP, Weed DA, et al. (1990) Recognition of distinctive patterns of gallium-67 distribution in sarcoidosis. J Nucl Med 31:1901–1914.Google Scholar
  48. 48.
    Israel HL, Albertine KH, Park CH, et al. (1991) Whole-body gallium 67 scans. Role in diagnosis of sarcoidosis. Am Rev Respir Dis 144:1182–1186.PubMedCrossRefGoogle Scholar
  49. 49.
    Chiti A, Schreiner FA, Crippa F, et al. (1999) Nuclear medicine procedures in lung cancer. Eur J Nucl Med 26:533–555.PubMedCrossRefGoogle Scholar
  50. 50.
    Inoue T, Kim EE, Komaki R, et al. (1995) Detecting recurrent or residual lung cancer with FDG-PET. J Nucl Med 36:788–793.PubMedGoogle Scholar
  51. 51.
    Steinhart HC, Hauser M, Allemann F, et al. (1997) Non-small cell lung cancer: Nodal staging with FDG-PET versus CT with correlative lymph node mapping and sampling. Radiology 202:441–446.Google Scholar
  52. 52.
    Scott WJ, Schwabe JC, Gupta NC, et al. (1994) Positron emission tomography of lung tumours and mediastinal lymph nodes using F18-fluorodeoxyglucose. Ann Thorac Surg 58:698–703.PubMedCrossRefGoogle Scholar
  53. 53.
    Guhlmann A, Storck M, Kotzerke J, et al. (1997) Lymph node staging in non-small cell lung cancer: Evaluation by [18]FDG positron emis–sion tomography (PET). Thorax 52:438–441.PubMedCrossRefGoogle Scholar
  54. 54.
    Bury T, Dowlati A, Paulus P, et al. (1996) Staging of non-small cell lung cancer by whole-body fluorine-18 deoxyglucose positron emission tomography. Eur J Nucl Med 23:204–206.PubMedCrossRefGoogle Scholar
  55. 55.
    Gambhir SS, Hoh CK, Phelps ME, et al. (1996) Decision tree sensitivity analysis for cost-effectiveness of FDG-PET in the staging and management of non-small cell lung carcinoma. J Nucl Med 37:1428–1436.PubMedGoogle Scholar
  56. 56.
    Ragheb AM, Elgazzar AH, Ibrahim AK, et al. (1995) A comparative study between planar Ga-67, Tl-201 images, chest x-ray, and x-ray CT in inoperable non-small cell carcinoma of the lung. Clin Nucl Med 20:426–433.PubMedCrossRefGoogle Scholar
  57. 57.
    Matsuno S, Tanabe M, Kawasaki Y, et al. (1992) Effectiveness of planar images and single photon emission tomography of thallium-201 compared with gallium-67 in patients with primary lung cancer. Eur J Nucl Med 19:86–95.PubMedCrossRefGoogle Scholar
  58. 58.
    Takekawa H, Takaoka K, Tsukamoto E, et al. (1997) Thallium-201 single photon emission computed tomography as an indicator of prognosis for patients with lung carcinoma. Cancer 80:198–203.PubMedCrossRefGoogle Scholar
  59. 59.
    Greyson ND, Freeman M (1998) Incidental detection of a malignant thymic tumor by Tc-99m sestamibi cardiac imaging. Clin Nucl Med 23:781–782.PubMedCrossRefGoogle Scholar
  60. 60.
    Arbab AS, Koizumi K, Toyama K, et al. (1996) Uptake of technetium-99m-tetrofosmin,technetium-99m-MIBI and thallium-201 in tumor cell lines. J Nucl Med 37:1551–1556.PubMedGoogle Scholar
  61. 61.
    Bom HS, Kim YC, Song HC, et al. (1998) Technetium-99m-MIBI uptake in small cell lung cancer. J Nucl Med 39:91–94.PubMedGoogle Scholar
  62. 62.
    Piwnica-Worms D, Chiu ML, Budding M, et al. (1993) Functional imaging of multidrug-resistant P-glycoprotein with an organotech-netium complex. Cancer Res 53:977–984.PubMedGoogle Scholar
  63. 63.
    Ballinger JR, Bannerman J, Boxen I, et al. (1996) Technetium-99m-tetrofosmin as a substrate for P-glycoprotein: In vitro studies in a multidrug-resistant breast tumor cells. J Nucl Med 37:1578–1582.PubMedGoogle Scholar
  64. 64.
    Basoglu T, Bernay I, Coskun C, et al. (1998) Pulmonary Tc-99m tetrofosmin imaging: Clinical experience with detecting malignant lesions and monitoring response to therapy. Clin Nucl Med 23:753–757.PubMedCrossRefGoogle Scholar
  65. 65.
    Coates G, O’Brodovich (1986) Measurement of pulmonary epithelial permeability with 99mTc-DTPA aerosol. Semin Nucl Med 16:275–284.PubMedCrossRefGoogle Scholar
  66. 66.
    Susskind H, Weber DA, Lau YH, et al. (1997) Impaired permeability in radiation-induced lung injury detected by technetium-99m-DTPA lung clearance. J Nucl Med 38:966–971.PubMedGoogle Scholar
  67. 67.
    Susskind H. Rom WN (1992) Lung inflammation in coal miners assessed by uptake of 67Ga-citrate and clearance of inhaled 99mTcRelabeled diethylenetriamine pentaacetate aerosol. Am Rev Respir Dis 146:47–52.PubMedGoogle Scholar
  68. 68.
    Jacobs MP, Baughman RP, Hughes J, et al. (1985) Radioaerosol lung clearance in patients with active pulmonary sarcoidosis. Am Rev Respir Dis 131:687–689.PubMedGoogle Scholar
  69. 69.
    Tennenberg SD (1987) The use of 99mTc-DTPA radioaerosol lung clearance in the assessment of acute lung injury: clinical applicability in the adult respiratory distress syndrome. Respir Care 32:757–772.Google Scholar
  70. 70.
    Committee 3 of the International Commission on Radiation Protection (1993) Summary of the current ICRP principles for protection of the patient in nuclear medicine. Pergamon Press, Oxford.Google Scholar
  71. 71.
    Ritenour ER (1986) Health effects of low level radiation: Carcinogenesis, teratogenesis, and mutagenesis. Semin Nucl Med 16:106–117.PubMedCrossRefGoogle Scholar
  72. 72.
    Sorenson JA (1986) Perception of radiation hazards. Semin Nucl Med 16:158–170PubMedCrossRefGoogle Scholar
  73. 73.
    van Beek EJ, Kuijer PM, Buller HR, et al. (1997) The clinical course of patients with suspected pulmonary embolism. Arch Intern Med 157:2593–2598.PubMedCrossRefGoogle Scholar
  74. 74.
    Ahlgren L, Ivarsson S, Johansson L, et al. (1985) Excretion of radionuclides in human breast milk after the administration of radiopharmaceuticals. J Nucl Med 26:1085–1090.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2001

Authors and Affiliations

  • N. D. Greyson

There are no affiliations available

Personalised recommendations