Advertisement

Sequences for OFDM and Multi-Code CDMA: Two Problems in Algebraic Coding Theory

  • Kenneth G. Paterson
Part of the Discrete Mathematics and Theoretical Computer Science book series (DISCMATH)

Summary

We study the peak-to-average power ratio (PAPR) problem for two different kinds of communications systems, Orthogonal Frequency Division Multiplexing (OFDM) and Multi-Code Code-Division Multiple Access (MC-CDMA). We describe a common coding theoretic approach to reducing the PAPR of both kinds of transmissions. In both cases, the classical Reed-Muller codes turn out to play a critical role. There is an intimate connection between Reed-Muller codes and Golay complementary sequences which can be exploited to produce codes suitable for OFDM. For MC-CDMA, it turns out that bent functions lead to transmissions with ideal power characteristics. In this way, the problem of finding good codes for OFDM and MC-CDMA can be closely related to some old and new problems in algebraic coding theory and sequence design.

Keywords

Boolean Function Power Ratio Bend Function Bent Function Kerdock Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M Aldinger “Multicarrier COFDM scheme in high bitrate radio local area net-works” in 5th IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun The Hague pp. 969–973, 1994.Google Scholar
  2. 2.
    J.A.C. Bingham, “Multicarrier modulation for data transmission: an idea whose time has come”, IEEE Commun. Magazine vol. 28, pp. 5–14, May 1990.MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Boyd, “Multitone signals with low crest factor”, IEEE Trans. Circuits and Systems vol. CAS-33, pp. 1018–1022, 1986.CrossRefGoogle Scholar
  4. 4.
    R.N. Braithwaite, “Using Walsh code selection to reduce the power variance of band-limited forward-link CDMA waveforms”, IEEE J. on Selected Areas in Communications vol. 18, no. 11, pp. 2260–2269, Nov. 2010.CrossRefGoogle Scholar
  5. 5.
    M.W. Cammarano and M.L. Walker, “Integer maxima in power envelopes of Golay codewords”, Technical Report TR-99–Q2, Dept. Math. Comp. Science, University of Richmond, 1997.Google Scholar
  6. 6.
    C. Carlet and P. Guillot, “A characterization of binary bent functions”, J. Combin. Theory Ser. A vol. 76, no. 2, pp. 328–335, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    C. Carlet and P. Guillot, “An alternate characterization of the bentness of bi-nary functions, with uniqueness”, Des. Codes Cryptogr vol. 14, no. 2, pp. 133–140, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    L.J. Cimini, Jr., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing”, IEEE Trans. Commun vol. 33, pp. 665–675, July 1985.CrossRefGoogle Scholar
  9. 9.
    G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering codes North-Holland, Amsterdam, 1997.zbMATHGoogle Scholar
  10. 10.
    J.A. Davis and J. Jedwab, “Peak-to-mean power control and error correction for OFDM transmission using Golay sequences and Reed-Muller codes”, Elec. Lett vol. 33, pp. 267–268, 1997.CrossRefGoogle Scholar
  11. 11.
    J.A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes”, IEEE Trans. Inform. Theory vol. 45, pp. 2397–2417, Nov. 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    H. Dobbertin “Construction of bent functions and balanced Boolean func-tions with high nonlinearity” in Lecture Notes in Computer Science vol. 1008 pp. 61–74 Springer Berlin 1995.Google Scholar
  13. 13.
    S. Eliahou, M Kervaire and B Saffari “A new restriction on the lengths of Golay complementary sequences” J. Combin. Theory (A) vol. 55 pp. 49–59 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    P. Fan and M Darnell Sequence Design for Communications Applications Communications Systems, Techniques and Applications Research Studies Press Taunton 1996.Google Scholar
  15. 15.
    M.J.E. Golay, “Multislit spectroscopy”, J. Opt. Soc. Amer vol. 39, pp. 437–444, 1949.CrossRefGoogle Scholar
  16. 16.
    M.J.E. Golay, “Static multislit spectrometry and its application to the panoramic display of infrared spectra”, J. Opt. Soc. Amer vol. 41, pp. 468–472, 1951.CrossRefGoogle Scholar
  17. 17.
    M.J.E. Golay, “Complementary series”, IRE Trans. Inform. Theory vol. IT-7, pp. 82–87, 1961.MathSciNetCrossRefGoogle Scholar
  18. 18.
    A.J. Grant and RDJ van Nee, “Efficient maximum-likelihood decoding of Q-ary modulated Reed-M-uller codes” IEEE Comm. Lett vol. 2 pp. 134–136 1998.CrossRefGoogle Scholar
  19. 19.
    A.R. Hammons, Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and P. Solé, “The Z 4-linearity of Kerdock, Preparata, Goethals and related codes”, IEEE Trans. Inform. Theory vol. 40, pp. 301–319, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    S. Hara and R. Prasad, “Overview of multicarrier CDMA”,, IEEE Communications Magazine vol. 35, no. 12, pp. 126–133, 1997.CrossRefGoogle Scholar
  21. 21.
    C.-L. I and RD Gitlin “Multi-code CDMA wireless personal communications networks” in Proc. ICC’95 Seattle, Wash pp. 1060–1064 1995.Google Scholar
  22. 22.
    C.-L. I, CA Webb III, HC Huang, S ten Brink, S Nanda and RD Gitlin “IS-95 enhancements for multimedia services” Bell Labs Tech. J vol. 1 no. 2 pp. 60–87, 1996.CrossRefGoogle Scholar
  23. 23.
    A.E. Jones, T.A. Wilkinson and S.K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes”, Elec. Lett vol. 30, pp. 2098–2099, 1994.CrossRefGoogle Scholar
  24. 24.
    AE Jones and TA Wilkinson “Combined coding for error control and in-creased robustness to system nonlinearities in OFDM”, in IEEE 46th Vehicular Technology Conference Atlanta, USA pp. 904–908, April-May 1996.Google Scholar
  25. 25.
    T. Kasami, S. Lin, and W. Peterson, “New generalizations of Reed-Muller codes, Part I: primitive codes”, IEEE Trans. Inform. Theory vol. IT-14, pp. 189–199, 1968.MathSciNetCrossRefGoogle Scholar
  26. 26.
    V.K.N. Lau, “On the analysis of peak-to-average ratio (PAR) for IS95 and CDMA2000 systems”, IEEE Trans. Vehic. Tech vol. 49, no. 6, pp. 2174–2188, Nov. 2000.CrossRefGoogle Scholar
  27. 27.
    J.H. van Lint, An introduction to coding theory 2nd edition, Springer, Berlin, 1992.Google Scholar
  28. 28.
    F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes North-Holland, Amsterdam, 1977.zbMATHGoogle Scholar
  29. 29.
    M. Nazarathy, S.A. Newton, R.P. Giffard, D.S. Moberly, F. Sischka and W.R. Trutna, Jr., “Real-time long range complementary correlation optical time do-main reflectometer”, IEEE J. Lightwave Technology vol. 7, pp. 24–38, 1989.CrossRefGoogle Scholar
  30. 30.
    R.D.J. van Nee “OFDM codes for peak-to-average power reduction and error correction” in Proc. IEEE Globecom 1996, pp. 740–744, London, 1996.Google Scholar
  31. 31.
    K.M. Nieswand and K.N. Wagner, “Octary codewords with power envelopes of 3*2m”, Technical Report TR-99–03, Dept. Math. Comp. Science, University of Richmond, 1998.Google Scholar
  32. 32.
    H. Ochiai and H Imai “Block coding scheme based on complementary sequences for multicarrier signals” IEICE Trans. Fundamentals pp. 2136–2143 1997.Google Scholar
  33. 33.
    T. Ottosson “Precoding in multicode DS-CDMA Systems” in Proc. 1997 IEEE Int. Symp. Info. Thy Ulm, Germany June 29 – July 4th 1997 p. 351.CrossRefGoogle Scholar
  34. 34.
    T. Ottosson, “Precoding for minimization of envelope variations in multicode DS-CDMA systems”, Wireless Personal Communications vol. 13, pp. 57–78, May 2000.CrossRefGoogle Scholar
  35. 35.
    K.G. Paterson, “Generalised Reed-Muller codes and power control in OFDM modulation”, IEEE Trans. Inform. Theory vol. 46, pp. 104–120, Jan. 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    K.G. Paterson “On codes with low peak-to-average power ratio for multi- code CDMA”, HP Laboratories Technical Report HPL-2001–115, May 2001. Submitted.Google Scholar
  37. 37.
    K.G. Paterson and A.E. Jones, “Efficient decoding algorithms for generalised Reed-Muller Codes, IEEE Trans. Commun vol. 48, no. 8, pp. 1272–1285, 2000.zbMATHCrossRefGoogle Scholar
  38. 38.
    K.G. Paterson and V Tarokh “On the existence and construction of good codes with low peak-to-average power ratios” IEEE Trans. Inform. Theory vol. 46 no. 6 pp. 1974–1987 Sept. 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    B.M. Popović, “Synthesis of power efficient multitone signals with flat ampli-tude spectrum”, IEEE Trans. Commun vol. 39, pp. 1031–1033, 1991.CrossRefGoogle Scholar
  40. 40.
    J.G. Proakis Digital Communications (3rd Edition) McGraw-Hill, Inc., 1995.Google Scholar
  41. 41.
    B. Preneel, W van Leekwijck, L van Linden, R Govaerts and J Vandewalle “Propagation characteristics of boolean functions”, in Proc. EuroCrypt90 Lecture Notes in Computer Science vol. 473 pp. 161–173 Springer Berlin 1991.Google Scholar
  42. 42.
    C. Rössing “Golay complementary sequences for OFDM with 16-QAM” in Proc. 2000 IEEE Int. Symp. Info. Thy Sorrento, Italy June 25–30 2000 p. 331.Google Scholar
  43. 43.
    O.S. Rothaus, “On “bent” functions”, J. Comb. Thy. Ser. A vol. 20, pp. 300–305, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    P. Shelswell “The COFDM modulation system: the heart of digital audio broadcasting” Elte. Commun. Eng. J. pp. 127–136, June 1995.Google Scholar
  45. 45.
    T.E. Stinchcombe “Aperiodic correlations of length 2m sequences, complementarity, and power control for OFDM” Ph.D. thesis, University of London, 2000.Google Scholar
  46. 46.
    V. Tarokh and C Chong “A simple encodable/decodable OFDM QPSK code with low peak envelope to average power ratio”, Proc. 2001 IEEE Int. Symp. Info. Thy Washington D.C., USA June 24–29 2001.Google Scholar
  47. 47.
    V. Tarokh and H. Jafarkhani, “On Reducing the Peak to Average Power Ratio in Multicarrier Communications”, IEEE Trans. Comm vol. 48, pp. 37–44, 2000.CrossRefGoogle Scholar
  48. 48.
    C.-C. Tseng, “Signal multiplexing in surface-wave delay lines using orthogonal pairs of Golay’s complementary sequences”, IEEE Trans. Sonics and Ultrasonics vol. SU-18, pp. 103–107, 1971.Google Scholar
  49. 49.
    C.C. Tseng and CL Liu “Complementary sets of sequences” IEEE Trans. Inform. Theory vol. IT-18(5) pp. 644–652, Sept. 1972.MathSciNetCrossRefGoogle Scholar
  50. 50.
    R.J. Turyn “Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings” J. Combin. Theory (A), vol. 16 pp. 313–333, 1974.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    T. Wada, “Characteristic of bit sequences applicable to constant amplitude orthogonal multicode systems”, IEICE Trans. Fundamentals vol. E83-A, no. 11, pp. 2160–2164, Nov. 2000.Google Scholar
  52. 52.
    T. Wada, T. Yamazato, M. Katayama and A. Ogawa, “A constant amplitude coding for orthogonal multi-code CDMA systems”, IEICE Trans. Fundamentals vol. E80-A, no. 12, pp. 2477–2484, Dec. 1997.Google Scholar
  53. 53.
    T. Wada, T. Yamazato, M. Katayama and A. Ogawa, “Error correcting capar bility of constant amplitude coding for orthogonal multi-code CDMA systems”, IEICE Trans. Fundamentals vol. E81-A, no. 10, pp. 2166–2169, Oct. 1998.Google Scholar
  54. 54.
    J. Wolfmann “Bent functions and coding theory” in Difference sets, sequences and their correlation properties (Bad Windsheim, 1998) NATO Adv. Sei. Inst. Ser. C Math. Phys. Sei vol. 542 Kluwer Acad. Publ Dordrecht pp. 393–418, 1999.Google Scholar
  55. 55.
    TA Wilkinson and AE Jones “Minimisation of the peak to mean envelope power ratio of multicarrier transmission schemes by block coding” in IEEE 45th Vehicular Technology Conference pp. 825–829, Chicago July 1995.Google Scholar
  56. 56.
    M. Zeng, A. Annamalai and V.K. Bhargava, “Recent Advances in Cellular Wireless Communications”, IEEE Communications Magazine vol. 37, no. 9, pp. 28–138, 1999.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Kenneth G. Paterson
    • 1
  1. 1.Hewlett-Packard LaboratoriesStoke GiffordUK

Personalised recommendations