Commentary on Section IV

  • Konstantinos N. Syrigos


In Chapter 19, Schreiber and Nikolaus discuss the immunology of the intestinal mucosal defence system. This is embellished by Zbar and Karayiannakis in their overview of the gut immune compartments, demonstrating the complex but ordered arrangement of adhesion molecules expressed by circulating effector cells and reciprocal addressins located on specialized post-capillary venules. It has been demonstrated both in pre-clinical models and in certain clinical conditions that gut stimulation may modulate the stress response, affecting both permeability and the mucosa-associated immune system. This intestinal barrier function is pivotal in order to prevent an uncontrolled invasion by foreign proteins and haptens, including microbial and dietary antigens. This barrier is based on the integrity of the epithelial layer and the effective exclusion of intestinal toxic and infectious pathogens by the mucosa-associated immune system of the gut known as the Gut Associated Lymphoid Tissue or GALT as described in this chapter.


Systemic Inflammatory Response Syndrome Probiotic Therapy Enteral Diet Dietary Arginine North American Pediatric Renal Transplant Cooperative Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Li J, Kudsk KA, Gocinski B, Dent D, Glezer J, Langkamp-Henken B. Effects of parenteral and enteral nutrition on gut-associated lymphoid tissue. J Trauma 1995;39:44–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Heel KA, Kong SE, McCauley RD, Erber WN, Hall JC. The effect of minimum luminal nutrition on mucosal cellularity and immunity of the gut. J Gastroenterol Hepatol 1998;13:1015–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Mendez C, Jurkovich GJ, Wener MH, Garcia I, Mays M, Maier RV. Effects of supplemental dietary arginine, canola oil and trace elements on cellular immune function in critically injured patients. Shock 1996;6:7–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Engel JM, Menges T, Neuhauser C, Schaefer B, Hempelmann G. Effects of various feeding regimens in multiple trauma patients on septic complications and immune parameters. Anasthesiol Intensivemed Notfallmed Schmerzther 1997;32:234–9.CrossRefGoogle Scholar
  5. 5.
    Stechmiller JK, Treloar D, Allen N. Gut dysfunction in critically ill patients: a review of the literature. Am J Crit Care 1997;6:204–9.PubMedGoogle Scholar
  6. 6.
    Weimann A, Bastian L, Bischoff WE, Grotz M, Hansel M, Lotz J, et al. Influence of arginine, omega-3 fatty acids and nucleotide-supplemented enteral support on systemic inflammatory response syndrome and multiple organ failure in patients after severe trauma. Nutrition 1998;14:165–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Heyland DK, Cook DJ, Guyatt GH. Does the formulation of enteral feeding products influence infectious morbidity and mortality rates in the critically ill patient? A critical review of the evidence. Crit Care Med 1994;22:192–1202.CrossRefGoogle Scholar
  8. 8.
    Braga M, Gianotti L, Radaeilli G, Vignali A, Mari G, Gentilini O, DiCarlo V. Perioperative immunonutrition in patients undergoing cancer surgery: results of a randomized double-blind phase 3 trial. Arch Surg 1999;134:428–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Galban C, Montejo JC, Mesejo A, Marco P, Celaya S, Sanchez-Segura JM, Farre M, Bryg DJ. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med 2000;28:643–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Braga M, Gianotti L, Cestari A, Vignali A, Pellegatta F, Dolci A, DiCarlo V. Gut function and immune and inflammatory responses in patients preoperatively fed with supplemented enteral formulas. Arch Surg 1996;131:1257–64.PubMedCrossRefGoogle Scholar
  11. 11.
    McCarter MD, Gentilini OD, Gomez ME, Daly JM. Preoperative oral supplement with immunonutrients in cancer patients. JPEN J Parenter Enteral Nutr 1998;22:206–11.PubMedCrossRefGoogle Scholar
  12. 1.
    Mayer L, Eisenhardt D, Salomon P, Bauer W, Pious R, Piccinini L. Expression of class II molecules on intestinal epithelial cells in humans. Differences between normal and inflammatory bowel disease. Gastroenterology 1991;100:3–12.PubMedGoogle Scholar
  13. 2.
    Sartor RB. Review article: how relevant to human inflammatory bowel disease are current models of intestinal inflammation? Aliment Pharmacol Ther 1997;11:89–96.PubMedCrossRefGoogle Scholar
  14. 3.
    Shanahan F. Antibody ‘markers’ in Crohn’s disease: opportunity or overstatement? Gut 1997;40:557–8.PubMedCentralPubMedGoogle Scholar
  15. 4.
    Ruemmele PM, Targan SR, Levy G, Dubinsky M, Braun J, Seidman EG. Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease. Gastroenterology 1998;115:822–9.PubMedCrossRefGoogle Scholar
  16. 5.
    Dubinsky MC, Lamothe S, Yang HY, Targan S, Sinnett D, Theoret Y, et al. Optimizing and individualizing 6-MP therapy in IBD:the role of 6-MP metabolite levels and TPMT genotyping. Gastroenterology 1999;116:A702.CrossRefGoogle Scholar
  17. 6.
    Plevy SE, Taylor K, DeWoody KL, Schaible TF, Shealy D, Targan SR. Tumor necrosis factor (TNF) microsatellite haplotypes and perinuclear anti-neutrophil cytoplasmic antibody (pANCA) identify Crohn’s disease (CD) patients with poor clinical responses to anti-TNF monoclonal antibody (cA2). Gastroenterology 1997;112:A1062.Google Scholar
  18. 7.
    Seitz M. Molecular and cellular effects of methotrexate. Curr Opin Rheumatol 1999;11:226–32.PubMedCrossRefGoogle Scholar
  19. 8.
    Fernandez-Banares F, Bertran X, Esteve-Comas M, Cabre E, Menacho M, Humbert P, Planas R, Gassull MA. Azathioprine is useful in maintaining long-term remission induced by intravenous cyclosporine in steroid-refractory severe ulcerative colitis. Am J Gastroenterol 1996;91:2498–9.PubMedGoogle Scholar
  20. 9.
    Present DH, Rutgeerts PJ, Targan S, Hanauer SB, Mayer L, van Hogezand RA, et al. Infliximab for the treatment of fistulas in patients with Crohns disease. N Engl J Med 1999;340:1398–405.PubMedCrossRefGoogle Scholar
  21. 10.
    Bickston SJ, Lichtenstein GR, Arseneau KO, Cohen RB, Cominelli F. The relationship between infliximab treatment and lymphoma in Crohn’s disease. Gastroenterology 1999;117:1433–7.PubMedCrossRefGoogle Scholar
  22. 11.
    Stack WA, Mann SD, Roy AJ, Heath P, Sopwith M, Freeman J, Holmes G, Long R, Forbes A, Kamm MA. Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in Crohn’s disease. Lancet 1997;349:521–4.PubMedCrossRefGoogle Scholar
  23. 12.
    Barnhill RL, Doll NJ, Millikan LE, Hastings RC. Studies on the anti-inflammatory properties of thalidomide: effects on polymorphonuclear leukocytes and monocytes. J Am Acad Dermatol 1984;11:814–9.PubMedCrossRefGoogle Scholar
  24. 13.
    Ehrenpreis ED, Kane SV, Cohen LB, Hanauer SB, Cohen RD. Thalidomide therapy for patients with refractory Crohn’s disease: an open-label trial. Gastroenterology 1999;117:1271–7.PubMedCrossRefGoogle Scholar
  25. 14.
    Vasiliauskas EA, Kam LY, Abreu-Martin MT, Hassard PV, Papadakis KA, Yang H, et al. An open-label pilot study of low-dose thalidomide in chronically active, steroid-dependent Crohn’s disease. Gastroenterology 1999;117:1278–87.PubMedCrossRefGoogle Scholar
  26. 15.
    Bauer KS, Dixon SC, Figg WD. Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species-dependent. Biochem Pharmacol 1998;55:1827–34.PubMedCrossRefGoogle Scholar
  27. 16.
    Marriott JB, Westby M, Cookson S, Guckian M, Goodbourn S, Muller G, et al. CC-3052: a water soluble analog of thalidomide and potent inhibitor of activation-induced TNF-alpha production. J Immunol 1988;161:4236–43.Google Scholar
  28. 17.
    Sandborn WJ, Hanauer SB. Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results and safety. Inflamm Bowel Dis 1999;5:119–33.PubMedCrossRefGoogle Scholar
  29. 18.
    Gordon FH, Lai CWY, Hamilton MI, Allison MC, Fouweather M, Donoghue S, et al. Randomised double-blind placebo-controlled trial of recombinant humanized antibody to a4 integrin (antegren) in active Crohn’s disease. Gastroenterology 1999;116:A726.Google Scholar
  30. 19.
    Schreiber S, Fedorak EN, Nielsen OH, Wild G, Williams NC, Jacyna M, et al. A safety and efficacy study of recombinant human interleukin-10 (rHuIL-10) treatment in 329 patients with chronic active Crohn’s disease (CAD) Gastroenterology 1998;114:A1080.Google Scholar
  31. 20.
    Qiu BS, Pfeiffer CJ, Keith JC Jr. Protection by recombinant human interleukin-11 against experimental TNB-induced colitis in rats. Dig Dis Sci 1996;41:1625–30.PubMedCrossRefGoogle Scholar
  32. 21.
    Sands BE, Bank S, Sninsky CA, Robinson M, Katz S, Singleton JW, et al. Prelminiary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn’s disease. Gastroenterology 1999;117:58–64.PubMedCrossRefGoogle Scholar
  33. 22.
    Jobin C, Panja A, Hellerbrand C, Limuro Y, Didonato J, Brenner DA, et al. Inhibition of pro inflammatory molecule production by adenovirus-mediated expression of a nuclear factor κB super-repressor in human intestinal epithelial cells. J Immunol 1998;160:410–8.PubMedGoogle Scholar
  34. 23.
    Sandborn WJ. Preliminary report on the use of oral tacrolimus (FK506) in the treatment of complicated proximal small bowel and fistulizing Crohn’s disease. Am J Gastroenterol 1997;92:876–9.PubMedGoogle Scholar
  35. 24.
    Neurath MF, Wanitschke R, Peters M, Krummenauer F, Meyer zum Buschenfelde KH, Schlaak JF. Randomised trial of mycophenolate mofetil versus azathioprinbe for treatment of chronic active Crohn’s disease. Gut 1999;44:625–8.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 25.
    Yacyshyn VR, Bowen-Yacyshyn MB, Jewell L, Taml JA, Bennett CF, Kisner DL, et al. A placebocontrolled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology 1998;114:1133–42.PubMedCrossRefGoogle Scholar
  37. 26.
    Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, Strober W. Local administration of antisense phosphothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med 1996;2:998–1004.PubMedCrossRefGoogle Scholar
  38. 27.
    Sands BE. Therapy of inflammatory bowel disease. Gastroenterology 2000;118:S68–S82.PubMedCrossRefGoogle Scholar
  39. 28.
    Atreya R, Mudter J, Finotto S, Müllberg J, Jostock T, Witz S, et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation, evidence in Crohn’s disease and experimental colitis in vivo. Nature Med 2000;6:583–8.PubMedCrossRefGoogle Scholar
  40. 29.
    Pender SL, Tickle SP, Docherty AJ, Howie D, Wathen NC, McDonald TT. A major role of matrix metalloproteinases in T cell injury in the gut. J Immunol 1997;158:1582–90.PubMedGoogle Scholar
  41. 30.
    Madsen KL, Doyle JS, Jewell LD, Tavernini M, Fedorak RN. Lactobacillus species prevents colitis in IL-10 gene-deficient mice. Gastroenterology 1999;116:1107–14.PubMedCrossRefGoogle Scholar
  42. 31.
    Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon ATR. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet 1999;354:635–9.PubMedCrossRefGoogle Scholar
  43. 32.
    Gionchietti P, Rizzello F, Venturi A, Brigidi P, Matteuzzi D, Bazzocchi G, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double blind, placebo controlled trial. Gastroenterology 2000;119:305–9.CrossRefGoogle Scholar
  44. 33.
    Steidler L, Hans W, Schotte L, Nelyrick S, Obermeier F, Falk W, Fiers W. Remaut E. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000;289:1352–5.PubMedCrossRefGoogle Scholar
  45. 1.
    Mielke B, Moller P. Histomorphologic and immunophenotypic spectrum of primary gastro-intestinal B-celilymphomas. Int J Cancer 1991;47:334–43.PubMedCrossRefGoogle Scholar
  46. 2.
    Rohatiner A, d’Amore F, Coiffier B, Crowther D, Gospodarowicz M, Isaacson P, et al. Report on a workshop convened to discuss the pathological and staging classifications of gastrointestinal tract lymphoma. Ann Oncol 1994;5:397–400.PubMedCrossRefGoogle Scholar
  47. 3.
    Zucca E, Cavalli F. Gut lymphomas. Baillieres Clin Haematol 1996;9:727–41.PubMedCrossRefGoogle Scholar
  48. 4.
    deJong D, Aleman BM, Taal BG, Boot H. Controversies and consensus in the diagnosis, work-up and treatment of gastric lymphoma: an international survery. Ann Oncol 1999;10:275–80.CrossRefGoogle Scholar
  49. 5.
    Schmitt-Graff A. Immunological and molecular classification of mucosa-associated lymphoid tissue lymphoma. Recent Res Cancer Res 1996;142:121–36.CrossRefGoogle Scholar
  50. 6.
    Ruskone-Fourmestraux A, Delmer A, Lavergne A, Molina T, Brousse N, Audouin J, et al. Multiple lymphomatous polyposis of the gastrointestinal tract: prospective clinicopathologic study of 31 cases. Group D’etude des lymphomas digestifs. Gastroenterology 1997;112:7–16.PubMedCrossRefGoogle Scholar
  51. 7.
    Levine AM, Seneviratne L, Espina BM, Wohl AR, Tulpule A, Nathwani BN, et al. Evolving characteristics of AIDS-related lymphoma. Blood 2000;96:4084–90.PubMedGoogle Scholar
  52. 8.
    Hooper WC, Holman RC, Clarke MJ, Chorba TL. Trends in non-Hodskin lymphoma (NHL) and HIV-associated NHL deaths in the United States. Am J Hematol 2001;66:159–66.PubMedCrossRefGoogle Scholar
  53. 9.
    Straus DJ. HIV-associated lymphomas. Curr Oncol Rep 2001;3:260–5.PubMedCrossRefGoogle Scholar
  54. 10.
    Ambinder RF. Epstein-Barr virus associated lymphoproliferations in the AIDS setting. Eur J Cancer 2000;37:1209–16.CrossRefGoogle Scholar
  55. 11.
    Swerdlow AJ, Higgins CD, Hunt BJ, Thomas JA, Burke MM, Crawford DH, Yacoub MH. Risk of lymphoid neoplasia after cardiothoracic transplantation, a cohort study of the relation to EpsteinBarr virus. Transplantation 2000;69:897–904.PubMedCrossRefGoogle Scholar
  56. 12.
    Stevens SJ, Verschuuren EA, Pronk I, van der Bij W, Harmsen MC, The TH, et al. Frequent monitoring of Epstein-Barr virus DNA in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients. Blood 2001;97:1165–71.PubMedCrossRefGoogle Scholar
  57. 13.
    Tsai DE, Hardy CL, Tomaszewski JE, Kotloff RM, Oltoff KM, Somer BG, et al. Reduction in immunosuppression as initial therapy for posttransplant lymphoproliferative disorder: analysis of prognostic variables and long-term follow-up of 42 adults. Transplantation 2001;71:1076–88.PubMedCrossRefGoogle Scholar
  58. 14.
    Dharnidharka VR, Sullivan EK, Stablein DM, Tejani AH, Harmon WE. North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Risk factors for posttransplant lymphoproliferative disorder (PTLD) in pediatric kidney transplantation: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Transplantation 2001;71:1065–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Konstantinos N. Syrigos

There are no affiliations available

Personalised recommendations