Advertisement

A Cognitive Framework for Cooperative Problem Solving with Argument Visualization

  • Jan M. van Bruggen
  • Henny P. A. Boshuizen
  • Paul A. Kirschner
Part of the Computer Supported Cooperative Work book series (CSCW)

Abstract

The chapters in this volume bear witness to the common belief of the authors that visualizing argumentation facilitates a number of processes that their users, professionals or learners, engage in. These processes, we surmise, can often be typified as cooperative’ problem solving and there are many good reasons to assume that visualizing argumentation can facilitate this process. Unfortunately, there are other good reasons to assume that the reverse may occur as well. Argument visualization can quite effectively hinder problem solving. In this chapter we try to reach a better understanding of this “mixed blessing” of argument visualization and to formulate a number of recommendations on how to use it more profitably.

Keywords

Cognitive Load Problem Solver Multiple Representation External Representation Cognitive Load Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpay L., Giboin A., & Dieng R. (1998). Accidentology: an example of problem solving by multiple agents with multiple representations. In M. W. Van Someren, P. Reimann, H. P. A. Boshuizen, & T. de Jong (Eds.), Learning with multiple representations (pp. 152–174). Amsterdam: Pergamon.Google Scholar
  2. Barron B. (2000). Achieving coordination in collaborative problem-solving groups. Journal of the Learning Sciences, 9, 403–36.CrossRefGoogle Scholar
  3. Boshuzen H. P. A., & Tabachneck-Schijf H. J. M. (1998). Problem solving with multiple representations by multiple and single agents: an analysis of the issues involved. In M. W. Van Someren, P. Reimann, H. P. A. Boshuizen, & T. de Jong (Eds.), Learning with multiple representations (pp. 137–151). Amsterdam: Pergamon.Google Scholar
  4. Bromme R., Nuckles M., & Rambow R. (1999). Adaptivity and anticipation in expertlaypeoplecommunication. In S. E. Brennan, A. Giboin, & D. Traum (Eds.), Psychological models of communication in collaborative systems. Papers from the 1999 fall symposin (pp. 17-24). Menlo Park, CA: AAAI.Google Scholar
  5. Buckingham Shum, S., & Hammond, N. (1994). Argumentation-based design rationale: what use at what cost? International Journal of Man Machine Studies, 40, 603-652. Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and instruction, 8, 293-332.Google Scholar
  6. Chryssafidou, E. (1999). Computer-supported formulation of argumentation: a dialectical approach. Presentation at the symposium’ Belvedere: review and new applications’, Heerlen, 29-9-1999.Google Scholar
  7. Cohen, A.L., Cash, D. & Muller, M.J. (2000). Designing to support adversarial collaboration. CSCW 2000, December 2-6, Philadelphia: PA.Google Scholar
  8. De Jong, T., Ainsworth, S., Dobson, M., van der Hulst, A., Levonen, J., Reimann, P., Sine, J.-A., Van Someren, M. W., Spada, H., & Swaak, J. (1998). Acquiring knowledge in science and mathematics: the use of multiple representations in technology-based learning environments. In M. W. Van Someren, P. Reimann, H. P. A. Boshuzen, & T. de Jong (Eds.), Learning with multiple representations (pp. 9-40). Amsterdam: Pergamon.Google Scholar
  9. Duffy, T. M., & Cunningham, D. J. (1996). Constructivism: implications for the design and delivery of instruction. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 170-198). New York: Macmillan Library Reference USA.Google Scholar
  10. Duffy, T. M., Dueber, B., & Hawley, C. (1998). Critical thinking in a distributed environment. a pedagogical base for the design of conferencing systems (CRLT Technical report No 5-98). Bloomington, IN: Indiana University, Center for Research on Learning and Technology.Google Scholar
  11. Edelson, D., & O’Neill, D. K. (1994). The CoVis Collaboratory Notebook: computer support for scientific inquiry. paper presented at the Annual Meeting of the American Educational Research Association, New Orleans.Google Scholar
  12. Erkens, G. (1997). Cooperatief probleemoplossen met computers in het onderwijs; het modelleren van cooperatieve dialogen voor de ontwikkeling van intelligente onderwijssystemen. Dissertatie Universiteit Utrecht. (UBU DOBI 0-36-ERK). Universiteit UtrechtGoogle Scholar
  13. Goel, V., & Pirolli, P. (1992). The structure of design problem spaces. Cognitive Science, 16,395-429.Google Scholar
  14. Herring, S. (1999) Interactional coherence in CMC. Journal of Computer-Mediated Communication. 4. Retrieved August 10, 2002, from http://jcmc.huji.ac.il/vol4/issue4/herring.htm.Google Scholar
  15. Hewitt, J., Scardamalia, M., & Webb, J. (1997). Situative design issues for interactive learning environments: the problem of group coherence. Paper presented at the Annual Meeting of the American Educational Association, Chicago.Google Scholar
  16. Jonassen, D. H., Peck, K. L., & Wilson, B. G. (1999). Learning with technology: A constructivist perspective. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  17. Kanselaar, G., Erkens, G., & Jaspers, J. (2001). Computer supported collaborative learning. Teaching and Teacher Education, 17, 123-129.Google Scholar
  18. Kolodner, J., & Guzdial, M. (1996). Effects with and of CSCL: tracking learning in a new paradigm. In T. D. Koschmann (Ed.), CSCL, theory and practice of an emerging paradigm (pp. 307-320). Mahwah, N.J.: L. Erlbaum Associates.Google Scholar
  19. Lee, J. (1990). SIBYL: A qualitative decision management system. In P. H. Winston & S. A. Shellard (Eds.), Artificial Intelligence at MIT; expanding horizons (pp. 105-133). Cambridge, MA: MIT Press.Google Scholar
  20. Miao, Y., Holst, S., Haake, J. M., & Steinmetz, R. (2000a). PBL-protocols: Guiding and controlling problem based learning processes in virtual learning environments. Proceedings of the Fourth International Conference of the Learning Sciences (ICL.S2000), Ann Arbor, MI, June 14-17.Google Scholar
  21. Miao, Y., Holst, S., Holmer, T., Fleschutz, J., & Zentel, P. (2000b). An activity-oriented approach to visually structured knowledge representation for problem-based learning in virtual learning environments. paper presented at Fourth International Conference on the Design of Cooperative Systems (COOP 2000, Sophia Antipolis, France, 23-5-2000).Google Scholar
  22. Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  23. Norman, D. (1998). The invisible computer. Wlhygood products can fail, the personal computer is so complex, and information appliances are the answer. Cambridge, MA: The MIT Press. Paas, F., Renkl, A., & Sweller, J. (in press). Cognitive Load Theory. Educational P ychologist.Google Scholar
  24. Pea, R. D. (1993). Practices of distributed intelligence and designs for education. In G. Salomon (Ed. ), Distributed cognition: psychological and educational considerations (pp. 4787). Cambridge: Cambridge University Press.Google Scholar
  25. Reitman, W. (1965). Cognition and thought. New York: Wiley.Google Scholar
  26. Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4, 155-169.Google Scholar
  27. Rittel, H. W. J., & Webber, M. M. (1984). Planning problems are wicked problems. In N. Cross (Ed. ), Developments in design methodology (pp. 135-144). Chichester: John Wiley & Sons. (published earlier as part of’ Dilemmas in a general theory of planning’, Policy Sciences,4, 1973, 155-169)Google Scholar
  28. Selvin, A., Buckingham Shum, S., Sierhuis, M., Conklin, J., Zimmermann, B., Palus, C., Drath, W., Horth, D., Domingue, J., Motta, E., & Li, G. (2001). Compendium: Making Meetings into Knowledge Events. Knowledge Technologies 2001, March 4-7Google Scholar
  29. Austin, TX. Retrieved August 10, 2002 from http://wwvv.CompendiumInstitute.org/compendium/papers/Selvin-KT2001.pdfGoogle Scholar
  30. Stahl, G. (2001) IlebGuide: Guiding collaborative learning on the web with perspectives. Journal of Interactive Media in Education. Accessed: 06-08-2002.Google Scholar
  31. Stenning, K. (1998). Representation and conceptualisation in educational communication. In M. W. van Someren, P. Reimann, H. P. A. Boshuizen, & T. de Jong (Eds.), Learning with multiple representations (pp. 320-333). Amsterdam: Pergamon.Google Scholar
  32. Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic reasoning: logic and implementation.,Cognitive Science, 19,97-140.Google Scholar
  33. Suthers, D. (1995). Designing for internal vs external discourse in groupware for developing critical discussion skills. CHI’ 95 research symposium, Denver. Suthers, D. (2001). Towards a systematic study of representational guidance for collaborative learning discourse. Journal of Universal Computer Sciences, 7, 254-277. Suthers, D. D. (1999). Effects of alternate representations of evidential relations on collaborative learning discourse. In C. Hoadley & J. Roschelle (Eds.), Computer Support for Collaborative Learning; designing new media for a new millenium: collaborative technology for learning education, and training. CSCL 99, December 12-15, Palo Alto, CA (pp. 611-620). Palo Alto, CA: Stanford University.Google Scholar
  34. Suthers, D., Toth, E., & Weiner, A. (1997). An integrated approach to implementing collaborative inquiry in the classroom. In R. Hall, N. Miyake, & N. Enyedy (Eds.), Proceedings of CSCL’ 97.-The Second International Conference on Computer Support for Collaborative Learning (pp. 272-279). Toronto: University of Toronto Press.Google Scholar
  35. Suthers, D., Weiner, A., Connelly, J., & Paolucci, M. (1995). Belvedere: Engaging students in critical discussion of science and public policy issues. 7th Vorld conference on Artifical Intelligence in Education (AI—ED 95), Washington.Google Scholar
  36. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257-285.Google Scholar
  37. Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251-296.Google Scholar
  38. Van Bruggen, J., Kirschner, P., & Jochems, W. (2002). External representation of argumentation in CSCL and the management of cognitive load. Learning and Instruction, 12(1), 121-138.Google Scholar
  39. Veerman, A. (2000). Computer-supported collaborative learning through argumentation. PhD dissertation University of Utrecht.Google Scholar
  40. Veerman, A., Andriessen, J., & Kanselaar, G. (1999). Co-constructing meaning through diagram-mediated electronic discussion. Paper presented at the 8th conference for European Research on Learning and Instruction, 24-28 August, 1999, Gothenburg, Sweden. Veerman, A. L., & Treasure Jones, T. (1999). Software for problem solving through collaborative argumentation. In J. Andriessen & P. Coirier (Eds.), Foundations of argumentative text processing (pp. 203-229). Amsterdam: University of Amsterdam Press.Google Scholar
  41. Visser, W. (1990) More or less following a plan during design: opportunistic deviations in specification. International Journal of Man Machine Studies, 33, 247-278.Google Scholar
  42. Voss, J. F. (1991). Informal reasoning and international relations. In J. F. Voss & D. N. Perkins (Eds.), Informal reasoning and education (pp. 37-58). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  43. Voss J. F., Blais J., Means M. L., & Greene T. R. (1986). Informal reasoning and subject matter knowledge in the solving of economics problems by naive and novice individuals. Cognition & Instruction, 3, 269–302.CrossRefGoogle Scholar
  44. Voss J. F., Greene T. R., Post T. A., & Penner C. (1983). Problem-solving skill in the social sciences. In G. H. Bower (Ed.), The psychology of learning and motivation: Tool. 77. Advances in research and theory (pp. 165–213). New York: Academic Press.Google Scholar
  45. Voss J. F., & Post T. A. (1988). On the solving of ill-structured problems. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of eacpertise (pp. 261–285). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  46. Voss J. F., Wiley J., & Sandak R. (1999). Reasoning in the construction of argumentative texts. In J. Andriessen & P. Coirier (Eds.), Foundations of argumentative text processing (pp. 29-41). Amsterdam: University of Amsterdam Press.Google Scholar
  47. Zolin R., Fruchter R., & Levitt R. E. (2002). Simulating the process of trust: using simulation to test and explore a social process. Retrieved August 10, 2002 from http://www.cacos.ece.cmu.edu/conference2000/pdf/Roxanne-Zohn.pdfGoogle Scholar

Copyright information

© Springer-Verlag London 2003

Authors and Affiliations

  • Jan M. van Bruggen
    • 1
  • Henny P. A. Boshuizen
    • 1
  • Paul A. Kirschner
    • 1
  1. 1.Open University of the Netherlandsthe Netherlands

Personalised recommendations