Basics of Euclidean Geometry

  • Jean GallierEmail author
Part of the Texts in Applied Mathematics book series (TAM, volume 38)


In affine geometry it is possible to deal with ratios of vectors and barycenters of points, but there is no way to express the notion of length of a line segment or to talk about orthogonality of vectors. A Euclidean structure allows us to deal with metric notions such as orthogonality and length (or distance).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Emil Artin. Geometric Algebra. Wiley Interscience, first edition, 1957.Google Scholar
  2. 2.
    Marcel Berger. G´eom´etrie 1. Nathan, 1990. English edition: Geometry 1, Universitext,Springer-Verlag.Google Scholar
  3. 3.
    Marcel Berger. G´eom´etrie 2. Nathan, 1990. English edition: Geometry 2, Universitext,Springer-Verlag.Google Scholar
  4. 4.
    G. Cagnac, E. Ramis, and J. Commeau. Math´ematiques Sp´eciales, Vol. 3, G´eom´etrie. Masson,1965.Google Scholar
  5. 5.
    P.G. Ciarlet. Introduction to Numerical Matrix Analysis and Optimization. Cambridge University Press, first edition, 1989. French edition: Masson, 1994.Google Scholar
  6. 6.
    H.S.M. Coxeter. Introduction to Geometry. Wiley, second edition, 1989.Google Scholar
  7. 7.
    James W. Demmel. Applied Numerical Linear Algebra. SIAM Publications, first edition,1997.Google Scholar
  8. 8.
    Jean Fresnel. M´ethodes Modernes en G´eom´etrie. Hermann, first edition, 1998.Google Scholar
  9. 9.
    Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press, third edition, 1996.Google Scholar
  10. 10.
    Jacques Hadamard. Lec¸ons de G´eom´etrie El´ementaire. I G´eom´etrie Plane. Armand Colin,thirteenth edition, 1947.Google Scholar
  11. 11.
    Jacques Hadamard. Lec¸ons de G´eom´etrie El´ementaire. II G´eom´etrie dans l’Espace. Armand Colin, eighth edition, 1949.Google Scholar
  12. 12.
    Ramesh Jain, Rangachar Katsuri, and Brian G. Schunck. Machine Vision. McGraw-Hill, first edition, 1995.Google Scholar
  13. 13.
    D. Kincaid and W. Cheney. Numerical Analysis. Brooks/Cole Publishing, second edition,1996.Google Scholar
  14. 14.
    Serge Lang. Algebra. Addison-Wesley, third edition, 1993.Google Scholar
  15. 15.
    Serge Lang. Real and Functional Analysis. GTM 142. Springer-Verlag, third edition, 1996.Google Scholar
  16. 16.
    Serge Lang. Undergraduate Analysis. UTM. Springer-Verlag, second edition, 1997.Google Scholar
  17. 17.
    Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, second edition,1998.Google Scholar
  18. 18.
    Dan Pedoe. Geometry, A Comprehensive Course. Dover, first edition, 1988.Google Scholar
  19. 19.
    Eug`ene Rouch’e and Charles de Comberousse. Trait´e de G´eom´etrie. Gauthier-Villars, seventh edition, 1900.Google Scholar
  20. 20.
    Walter Rudin. Real and Complex Analysis. McGraw-Hill, third edition, 1987.Google Scholar
  21. 21.
    Denis Serre. Matrices. Theory and Applications. GTM No. 216. Springer-Verlag, second edition, 2010.Google Scholar
  22. 22.
    Ernst Snapper and Troyer Robert J. Metric Affine Geometry. Dover, first edition, 1989.Google Scholar
  23. 23.
    Gilbert Strang. Introduction to Applied Mathematics. Wellesley–Cambridge Press, first edition,1986.Google Scholar
  24. 24.
    Gilbert Strang. Linear Algebra and Its Applications. Saunders HBJ, third edition, 1988.Google Scholar
  25. 25.
    Claude Tisseron. G´eom´etries Affines, Projectives, et Euclidiennes. Hermann, first edition,1994.Google Scholar
  26. 26.
    L.N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM Publications, first edition,1997.Google Scholar
  27. 27.
    Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3D Computer Vision. Prentice-Hall, first edition, 1998.Google Scholar

Copyright information

© Springer Science+Businees Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations