Nanofabrication of Functional Nanostructures by Thermochemical Nanolithography

  • Debin Wang
  • Vamsi K. Kodali
  • Jennifer E. Curtis
  • Elisa RiedoEmail author


Nanofabrication is the process of building functional structures with nanoscale dimensions, which can be used as components, devices, or systems with high density, in large quantities, and at low cost. Since the invention of scanning tunneling microscopy (STM) and atomic force microscopy (AFM) in 1980s, the application of scanning probe based lithography (SPL) techniques for modification of substrates and creation of functional nanoscale structures and nanostructured materials has been widespread, resulting in the emergence of a large variety of methodologies. In this chapter, we review the recent development of a thermal probe based nanofabrication technique called thermochemical nanolithography (TCNL). We start with a brief review of the evolution of the thermal AFM probes integrated with resistive heaters. We then provide an overview of some established nanofabrication techniques in which thermal probes are used, namely thermomechanical nanolithography, the Millipede project, and thermal dip-pen nanolithography. We discuss the heat transfer mechanisms of the thermal probes in the thermal writing process of TCNL. The remainder of the chapter focuses on the use of TCNL on a variety of systems and thermochemical reactions. TCNL has been successfully used for fabrication of functional nanostructures that are appealing for various applications in nanofluidics, nanoelectronics, nanophotonics, and biosensing devices. Finally, we close this chapter by discussing some future research directions where the capabilities and robustness of TCNL can be further extended.


Atomic force microscopy (AFM) Scanning probe microscopy (SPM) Nanofabrication Nanomanufacturing Nanolithography Nanopatterning Thermochemical nanolithography (TCNL) Thermomechanical nanolithography Thermal dip-pen nanolithography (tDPN) Millipede Wettability Conjugated polymer Graphene Graphene oxide 



Atomic force microscopy


Cluster of differentiation


Covalent functionalization


Dip-pen nanolithography


Graphene oxide


Inter-cellular adhesion molecule


Immunoglobulin G


Microelectromechanical system


Molecular recognition


Protein kinase C-θ


Poly(3-(4-[(E)-3-methoxy-3-oxoprop-1-enyl]phenoxy)propyl 2-methacrylate)


Poly(methyl methacrylate)


Poly(p-phenylene vinylene)


Self-assembled monolayers




Scanning probe lithography


Scanning probe microscopy


Scanning tunneling microscopy


Thermochemical nanolithography


Thermal dip-pen nanolithography




Temperature of glass transition in organic polymer materials



The authors would like to thank Dr. Seth R. Marder and his research group for the fruitful discussions and the preparation of TCNL polymer samples. We would also like to acknowledge Dr. William P. King and his research group for their continuing support on thermal AFM probes. This work was supported by National Science Foundation (CMDITR program DMR 0120967, MRSEC program DMR 0820382, and DMR-0706031), Department of Energy (DE-FG02-06ER46293 and PECASE), and Georgia Institute of Technology (Georgia Tech Research Foundation, COE Cutting Edge Research Award, and COPE graduate fellowship).


  1. 1.
    H. M. Saavedra, T. J. Mullen, P. P. Zhang, D. C. Dewey, S. A. Claridge, P. S. Weiss, Hybrid strategies in nanolithography, Rep. Prog. Phys. 73, 036501 (2010).Google Scholar
  2. 2.
    Y. N. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, Unconventional methods for fabricating and patterning nanostructures, Chem. Rev. 99, 1823 (1999).Google Scholar
  3. 3.
    B. D. Gates, Q. B. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, New approaches to nanofabrication: Molding, printing, and other techniques, Chem. Rev. 105, 1171 (2005).Google Scholar
  4. 4.
    A. A. Tseng, A. Notargiacomo, T. P. Chen, Nanofabrication by scanning probe microscope lithography: A review, J. Vac. Sci. & Technol. B 23, 877 (2005).Google Scholar
  5. 5.
    R. F. Service, Can chip devices keep shrinking? Science 274, 1834 (1996).Google Scholar
  6. 6.
    G. M. Whitesides, The ‘right’ size in nanobiotechnology, Nat. Biotechnol. 21, 1161 (2003).Google Scholar
  7. 7.
    S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Plasmonics – a route to nanoscale optical devices, Adv. Mater. 13, 1501 (2001).Google Scholar
  8. 8.
    M. D. Levenson, N. S. Viswanathan, R. A. Simpson, Improving resolution in photolithography with a phase-shifting mask, IEEE Trans. Electron Dev. 29, 1828 (1982).Google Scholar
  9. 9.
    D. R. Medeiros, A. Aviram, C. R. Guarnieri, W. S. Huang, R. Kwong, C. K. Magg, A. P. Mahorowala, W. M. Moreau, K. E. Petrillo, M. Angelopoulos, Recent progress in electron-beam a resists for advanced mask-making, IBM J. Res. Dev. 45, 639 (2001).Google Scholar
  10. 10.
    Y. N. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, Complex optical surfaces formed by replica molding against elastomeric masters, Science 273, 347 (1996).Google Scholar
  11. 11.
    G. Krausch, R. Magerle, Nanostructured thin films via self-assembly of block copolymers, Adv. Mater. 14, 1579 (2002).Google Scholar
  12. 12.
    M. P. Zach, K. H. Ng, R. M. Penner, Molybdenum nanowires by electrodeposition, Science 290, 2120 (2000).Google Scholar
  13. 13.
    D. Wouters, U. S. Schubert, Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices, Angew. Chem. Int. Ed. 43, 2480 (2004).Google Scholar
  14. 14.
    G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett. 40, 178 (1982).Google Scholar
  15. 15.
    G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56, 930 (1986).Google Scholar
  16. 16.
    D. M. Eigler, E. K. Schweizer, Positioning single atoms with a scanning tunneling microscope, Nature 344, 524 (1990).Google Scholar
  17. 17.
    R. M. Nyffenegger, R. M. Penner, Nanometer-scale surface modification using the scanning probe microscope: Progress since 1991, Chem. Rev. 97, 1195 (1997).Google Scholar
  18. 18.
    R. D. Piner, J. Zhu, F. Xu, S. H. Hong, C. A. Mirkin, Dip-pen nanolithography, Science 283, 661 (1999).Google Scholar
  19. 19.
    J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air, Appl. Phys. Lett. 56, 2001 (1990).Google Scholar
  20. 20.
    P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, The “Millipede” – nanotechnology entering data storage, IEEE Trans. Nanotechnol. 1, 39 (2002).Google Scholar
  21. 21.
    R. Neffati, A. Alexeev, S. Saunin, J. C. M. Brokken-Zijp, D. Wouters, S. Schmatloch, U. S. Schubert, J. Loos, Automated scanning probe microscopy as a new tool for combinatorial polymer research: Conductive carbon black/poly(dimethylsiloxane) composites, Macromol. Rapid Commun. 24, 113 (2003).Google Scholar
  22. 22.
    D. S. Ginger, H. Zhang, C. A. Mirkin, The evolution of dip-pen nanolithography, Angew. Chem. Int. Ed. 43, 30 (2004).Google Scholar
  23. 23.
    S. H. Hong, J. Zhu, C. A. Mirkin, Multiple ink nanolithography: Toward a multiple-pen nano-plotter, Science 286, 523 (1999).Google Scholar
  24. 24.
    A. Noy, A. E. Miller, J. E. Klare, B. L. Weeks, B. W. Woods, J. J. DeYoreo, Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography, Nano Lett. 2, 109 (2002).Google Scholar
  25. 25.
    L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, C. A. Mirkin, Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography, Science 296, 1836 (2002).Google Scholar
  26. 26.
    J. C. Garno, Y. Y. Yang, N. A. Amro, S. Cruchon-Dupeyrat, S. W. Chen, G. Y. Liu, Precise positioning of nanoparticles on surfaces using scanning probe lithography, Nano Lett. 3, 389 (2003).Google Scholar
  27. 27.
    L. A. Porter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak, Electroless nanoparticle film deposition compatible with photolithography, microcontact printing, and dip-pen nanolithography patterning technologies, Nano Lett. 2, 1369 (2002).Google Scholar
  28. 28.
    D. A. Weinberger, S. G. Hong, C. A. Mirkin, B. W. Wessels, T. B. Higgins, Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching, Adv. Mater. 12, 1600 (2000).Google Scholar
  29. 29.
    T. Thorsen, S. J. Maerkl, S. R. Quake, Microfluidic large-scale integration, Science 298, 580 (2002).Google Scholar
  30. 30.
    A. Majumdar, Scanning thermal microscopy, Annu. Rev. Mater. Res. 29, 505 (1999).Google Scholar
  31. 31.
    W. P. King, T. W. Kenny, K. E. Goodson, Comparison of thermal and piezoresistive sensing approaches for atomic force microscopy topography measurements, Appl. Phys. Lett. 85, 2086 (2004).Google Scholar
  32. 32.
    W. P. King, Design analysis of heated atomic force microscope cantilevers for nanotopography measurements, J. Micromech. Microeng. 15, 2441 (2005).Google Scholar
  33. 33.
    A. Hammiche, H. M. Pollock, M. Song, D. J. Hourston, Sub-surface imaging by scanning thermal microscopy, Meas. Sci. Technol. 7, 142 (1996).Google Scholar
  34. 34.
    M. H. Li, Y. B. Gianchandani, Microcalorimetry applications of a surface micromachined bolometer-type thermal probe, J. Vac. Sci. Technol. B 18, 3600 (2000).Google Scholar
  35. 35.
    H. J. Mamin, B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, D. Rugar, High-density data storage using proximal probe techniques, IBM J. Res. Dev. 39, 681 (1995).Google Scholar
  36. 36.
    M. A. Lantz, G. K. Binnig, M. Despont, U. Drechsler, A micromechanical thermal displacement sensor with nanometre resolution, Nanotechnology 16, 1089 (2005).Google Scholar
  37. 37.
    A. Pantazi, A. Sebastian, T. A. Antonakopoulos, P. Baechtold, A. R. Bonaccio, J. Bonan, G. Cherubini, M. Despont, R. A. DiPietro, U. Drechsler, U. Duerig, B. Gotsmann, W. Haeberle, C. Hagleitner, J. L. Hedrick, D. Jubin, A. Knoll, M. A. Lantz, J. Pentaralkis, H. Pozidis, R. C. Pratt, H. Rothuizen, R. Stutz, M. Varsamou, D. Wiesmann, E. Eleftheriou, Probe-based ultrahigh-density storage technology, IBM J. Res. Dev. 52, 493 (2008).Google Scholar
  38. 38.
    W. P. King, T. W. Kenny, K. E. Goodson, G. Cross, M. Despont, U. Durig, H. Rothuizen, G. K. Binnig, P. Vettiger, Atomic force microscope cantilevers for combined thermomechanical data writing and reading, Appl. Phys. Lett. 78, 1300 (2001).Google Scholar
  39. 39.
    J. Lee, W. P. King, Improved all-silicon microcantilever heaters with integrated piezoresistive sensing, J. Microelectromech. Syst. 17, 432 (2008).Google Scholar
  40. 40.
    K. J. Kim, K. Park, J. Lee, Z. M. Zhang, W. P. King, Nanotopographical imaging using a heated atomic force microscope cantilever probe, Sensor. Actuat. A-Phys. 136, 95 (2007).Google Scholar
  41. 41.
    K. Park, J. Lee, Z. M. Zhang, W. P. King, Topography imaging with a heated atomic force microscope cantilever in tapping mode, Rev. Sci. Instrum. 78, (2007).Google Scholar
  42. 42.
    J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, H. W. Kesteren, Disk recording beyond 100 Gb/in2: Hybrid recording? J. Appl. Phys. 87, 5398 (2000).Google Scholar
  43. 43.
    H. J. Mamin, D. Rugar, Thermomechanical writing with an atomic force microscope tip, Appl. Phys. Lett. 61, 1003 (1992).Google Scholar
  44. 44.
    H. J. Mamin, Thermal writing using a heated atomic force microscope tip, Appl. Phys. Lett. 69, 433 (1996).Google Scholar
  45. 45.
    A. W. Knoll, D. Pires, O. Coulembier, P. Dubois, J. L. Hedrick, J. Frommer, U. Duerig, Probe-based 3-D nanolithography using self-amplified depolymerization polymers, Adv. Mater. 22, 3361–3365 (2010).Google Scholar
  46. 46.
    D. Pires, J. L. Hedrick, A. De Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A. W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes, Science 328, 732 (2010).Google Scholar
  47. 47.
    P. E. Sheehan, L. J. Whitman, W. P. King, B. A. Nelson, Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett. 85, 1589 (2004).Google Scholar
  48. 48.
    W. K. Lee, L. J. Whitman, J. Lee, W. P. King, P. E. Sheehan, The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography, Soft Matter 4, 1844 (2008).Google Scholar
  49. 49.
    B. A. Nelson, W. P. King, A. R. Laracuente, P. E. Sheehan, L. J. Whitman, Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography, Appl. Phys. Lett. 88, 033104 (2006).Google Scholar
  50. 50.
    L. Aeschimann, A. Meister, T. Akiyama, B. W. Chui, P. Niedermann, H. Heinzelmann, N. F. De Rooij, U. Staufer, P. Vettiger, Scanning probe arrays for life sciences and nanobiology applications, Microelectron. Eng. 83, 1698 (2006).Google Scholar
  51. 51.
    J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, J. K. Gimzewski, Translating biomolecular recognition into nanomechanics, Science 288, 316 (2000).Google Scholar
  52. 52.
    F. Huber, M. Hegner, C. Gerber, H. J. Guntherodt, H. P. Lang, Label free analysis of transcription factors using microcantilever arrays, Biosens. Bioelectron. 21, 1599 (2006).Google Scholar
  53. 53.
    G. H. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, A. Majumdar, Bioassay of prostate-specific antigen (PSA) using microcantilevers, Nat. Biotechnol. 19, 856 (2001).Google Scholar
  54. 54.
    M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Haberle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, C. Quate, 5X5 2D AFM cantilever arrays a first step towards a Terabit storage device, Sensor. Actuat. A-Phys. 73, 89 (1999).Google Scholar
  55. 55.
    M. Despont, U. Drechsler, R. Yu, H. B. Pogge, P. Vettiger, Wafer-scale microdevice transfer/interconnect: Its application in an AFM-based data-storage system, J. Microelectromech. Syst. 13, 895 (2004).Google Scholar
  56. 56.
    M. Zhang, D. Bullen, S. W. Chung, S. Hong, K. S. Ryu, Z. F. Fan, C. A. Mirkin, C. Liu, A MEMS nanoplotter with high-density parallel dip-pen manolithography probe arrays, Nanotechnology 13, 212 (2002).Google Scholar
  57. 57.
    X. F. Wang, C. Liu, Multifunctional probe array for nano patterning and imaging, Nano Lett. 5, 1867 (2005).Google Scholar
  58. 58.
    J. Zou, D. Bullen, X. F. Wang, C. Liu, C. A. Mirkin, Conductivity-based contact sensing for probe arrays in dip-pen nanolithography, Appl. Phys. Lett. 83, 581 (2003).Google Scholar
  59. 59.
    J. Lee, W. P. King, Array of Microcantilever Heaters with Integrated Piezoresistors, in Proceedings of the 7th International IEEE Conference on Nanotechnology, Hong Kong, 135–140, (2007).Google Scholar
  60. 60.
    J. Lee, T. Beechem, T. L. Wright, B. A. Nelson, S. Graham, W. P. King, Electrical, thermal, and mechanical characterization of silicon microcantilever heaters, J. Microelectromech. Syst. 15, 1644 (2006).Google Scholar
  61. 61.
    L. Shi, A. Majumdar, Thermal transport mechanisms at nanoscale point contacts, J. Heat Trans-T ASME 124, 329 (2002).Google Scholar
  62. 62.
    S. K. Saha, L. Shi, Molecular dynamics simulation of thermal transport at a nanometer scale constriction in silicon, J. Appl. Phys. 101 (2007).Google Scholar
  63. 63.
    B. W. Chui, M. Asheghi, Y. S. Ju, K. E. Goodson, T. W. Kenny, H. J. Mamin, Intrinsic-carrier thermal runaway in silicon microcantilevers, Nanosc. Microsc. Therm. 3, 217 (1999).Google Scholar
  64. 64.
    B. A. Nelson, W. P. King, Modeling and simulation of the interface temperature between a heated silicon tip and a substrate, Nanosc. Microsc. Therm. 12, 98 (2008).Google Scholar
  65. 65.
    B. Bhushan, H. Fuchs, Applied Scanning Probe Methods IV: Industrial Applications (Springer, Berlin, 2006).Google Scholar
  66. 66.
    D. Wang, Thermochemical Nanolithography Fabrication and Atomic Force Microscopy Characterization of Functional Nanostructures, Georgia Institute of Technology (2010).Google Scholar
  67. 67.
    G. Chen, Phonon heat conduction in nanostructures, Inter. J. Therm. Sci. 39, 471 (2000).Google Scholar
  68. 68.
    C. Hu, M. Kiene, P. S. Ho, Thermal conductivity and interfacial thermal resistance of polymeric low k films, Appl. Phys. Lett. 79, 4121 (2001).Google Scholar
  69. 69.
    M. M. Yovanovich, J. R. Culham, P. Teertstra, Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks, IEEE T. Compon. Pack. T 21, 168 (1998).Google Scholar
  70. 70.
    D. Wang, V. K. Kodali, W. D. Underwood, J. E. Jarvholm, T. Okada, S. C. Jones, M. Rumi, Z. Dai, W. P. King, S. R. Marder, J. E. Curtis, E. Riedo, Thermochemical nanolithography of multifunctional nanotemplates for assembling nano-objects, Adv. Funct. Mater. 19, 1 (2009).Google Scholar
  71. 71.
    R. Szoszkiewicz, T. Okada, S. C. Jones, T. D. Li, W. P. King, S. R. Marder, E. Riedo, High-speed, sub-15 nm feature size thermochemical nanolithography, Nano Lett. 7, 1064 (2007).Google Scholar
  72. 72.
    S. Xu, G. Y. Liu, Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly, Langmuir 13, 127 (1997).Google Scholar
  73. 73.
    B. Klehn, U. Kunze, Nanolithography with an atomic force microscope by means of vector-scan controlled dynamic plowing, J. Appl. Phys. 85, 3897 (1999).Google Scholar
  74. 74.
    W. Fudickar, A. Fery, T. Linker, Reversible light and air-driven lithography by singlet oxygen, J. Am. Chem. Soc. 127, 9386 (2005).Google Scholar
  75. 75.
    I. Turyan, U. O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, D. Mandler, Writing-reading-erasing on tungsten oxide films using the scanning electrochemical microscope, Adv. Mater. 12, 330 (2000).Google Scholar
  76. 76.
    K. Seo, E. Borguet, Nanolithographic write, read, and erase via reversible nanotemplated nanostructure electrodeposition on alkanethiol-modified Au(111) in an aqueous solution, Langmuir 22, 1388 (2006).Google Scholar
  77. 77.
    D. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, W. P. King, Local wettability modification by thermochemical nanolithography with write-read-overwrite capability, Appl. Phys. Lett. 91, 243104 (2007).Google Scholar
  78. 78.
    M. A. Lantz, B. Gotsmann, U. T. Durig, P. Vettiger, Y. Nakayama, T. Shimizu, H. Tokumoto, Carbon nanotube tips for thermomechanical data storage, Appl. Phys. Lett. 83, 1266 (2003).Google Scholar
  79. 79.
    M. Arnold, E. A. Cavalcanti-Adam, R. Glass, J. Blummel, W. Eck, M. Kantlehner, H. Kessler, J. P. Spatz, Activation of integrin function by nanopatterned adhesive interfaces, Chemphyschem 5, 383 (2004).Google Scholar
  80. 80.
    E. Zamir, B. Geiger, Molecular complexity and dynamics of cell-matrix adhesions, J. Cell Sci. 114, 3583 (2001).Google Scholar
  81. 81.
    A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, The immunological synapse: A molecular machine controlling T cell activation, Science 285, 221 (1999).Google Scholar
  82. 82.
    J. Duvigneau, H. Schonherr, G. J. Vancso, Atomic force microscopy based thermal lithography of poly(tert-butyl acrylate) block copolymer films for bioconjugation, Langmuir 24, 10825 (2008).Google Scholar
  83. 83.
    C. L. Feng, G. J. Vancso, H. Schonherr, Reactive μCP on ultrathin block copolymer films: Investigation of the μCP mechanism and application to sub-μm (Bio)molecular patterning, Langmuir 23, 1131 (2007).Google Scholar
  84. 84.
    M. H. Yun, N. V. Myung, R. P. Vasquez, C. S. Lee, E. Menke, R. M. Penner, Electrochemically grown wires for individually addressable sensor arrays, Nano Lett. 4, 419 (2004).Google Scholar
  85. 85.
    J. Kameoka, D. Czaplewski, H. Q. Liu, H. G. Craighead, Polymeric nanowire architecture, J. Mater. Chem. 14, 1503 (2004).Google Scholar
  86. 86.
    E. Tekin, E. Holder, D. Kozodaev, U. S. Schubert, Controlled pattern formation of poly [2-methoxy-5(2 '-ethylhexyloxyl)-1,4-phenylenevinylene] (MEH-PPV) by ink-jet printing, Adv. Funct. Mater. 17, 277 (2007).Google Scholar
  87. 87.
    B. Dong, N. Lu, M. Zelsmann, N. Kehagias, H. Fuchs, C. M. S. Torres, L. F. Chi, Fabrication of high-density large-area conducting-polymer nanostructures, Adv. Funct. Mater. 16, 1937 (2006).Google Scholar
  88. 88.
    J. H. Lim, C. A. Mirkin, Electrostatically driven dip-pen nanolithography of conducting polymers, Adv. Mater. 14, 1474 (2002).Google Scholar
  89. 89.
    B. W. Maynor, S. F. Filocamo, M. W. Grinstaff, J. Liu, Direct-writing of polymer nanostructures: Poly(thiophene) nanowires on semiconducting and insulating surfaces, J. Am. Chem. Soc. 124, 522 (2002).Google Scholar
  90. 90.
    E. Betzig, J. K. Trautman, Near-field optics- microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257, 189 (1992).Google Scholar
  91. 91.
    R. Riehn, A. Charas, J. Morgado, F. Cacialli, Near-field optical lithography of a conjugated polymer, Appl. Phys. Lett. 82, 526 (2003).Google Scholar
  92. 92.
    O. Fenwick, L. Bozec, D. Credgington, A. Hammiche, G. M. Lazzerini, Y. R. Silberberg, F. Cacialli, Thermochemical nanopatterning of organic semiconductors, Nat. Nanotechnol. 4, 664 (2009).Google Scholar
  93. 93.
    D. J. Lipomi, R. C. Chiechi, M. D. Dickey, G. M. Whitesides, Fabrication of conjugated polymer nanowires by edge lithography, Nano Lett. 8, 2100 (2008).Google Scholar
  94. 94.
    D. Wang, S. Kim, W. D. Underwood, A. J. Giordano, C. L. Henderson, Z. T. Dai, W. P. King, S. R. Marder, E. Riedo, Direct writing and characterization of poly(p-phenylene vinylene) nanostructures, Appl. Phys. Lett. 95, 233108 (2009).Google Scholar
  95. 95.
    X. S. Wu, M. Sprinkle, X. B. Li, F. Ming, C. Berger, W. A. de Heer, Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics, Phys. Rev. Lett. 101, 026801 (2008).Google Scholar
  96. 96.
    D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448, 457 (2007).Google Scholar
  97. 97.
    G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3, 270 (2008).Google Scholar
  98. 98.
    J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, P. E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett. 8, 3137 (2008).Google Scholar
  99. 99.
    J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Q. Wei, P. Sheehan, B. H. Houston, Wafer-scale reduced graphene oxide films for nanomechanical devices, Nano Lett. 8, 3441 (2008).Google Scholar
  100. 100.
    G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, Insulator to semimetal transition in graphene oxide, J. Phys. Chem. C 113, 15768 (2009).Google Scholar
  101. 101.
    Z. Wei, D. Wang, S. Kim, S. Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. T. Dai, S. R. Marder, C. Berger, W. P. King, W. A. deHeer, P. E. Sheehan, E. Riedo, Nanoscale tunable reduction of graphene oxide for graphene electronics, Science 328, 1373 (2010).Google Scholar
  102. 102.
    J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Light-emitting-diodes based on conjugated polymers, Nature 347, 539 (1990).Google Scholar
  103. 103.
    E. Kim, Y. N. Xia, G. M. Whitesides, Polymer microstructures formed by molding in capillaries, Nature 376, 581 (1995).Google Scholar
  104. 104.
    J. Lee, W. P. King, Liquid operation of silicon microcantilever heaters, IEEE Sens. J. 8, 1805 (2008).Google Scholar
  105. 105.
    P. C. Fletcher, J. R. Felts, Z. T. Dai, T. D. Jacobs, H. J. Zeng, W. Lee, P. E. Sheehan, J. A. Carlisle, R. W. Carpick, W. P. King, Wear-resistant diamond nanoprobe tips with integrated silicon heater for Tip-based nanomanufacturing, ACS Nano 4, 3338 (2010).Google Scholar
  106. 106.
    O. Akbulut, J. M. Jung, R. D. Bennett, Y. Hu, H. T. Jung, R. E. Cohen, A. M. Mayes, F. Stellacci, Application of supramolecular nanostarnping to the replication of DNA nanoarrays, Nano Lett. 7, 3493 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Debin Wang
    • 1
  • Vamsi K. Kodali
    • 2
  • Jennifer E. Curtis
    • 3
  • Elisa Riedo
    • 4
    Email author
  1. 1.The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Department of Biophysical ChemistrySchool of Physics, Georgia Institute of Technology, University of HeidelbergAtlantaUSA
  3. 3.School of Physics, Petit Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUSA
  4. 4.School of Physics, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations