Modulation of Dye Fluorescence by Photoinduced Intramolecular Charge Transfer with Resonance-Assisted Hydrogen Bond

  • Marcelo H. GehlenEmail author
  • Emanuelle R. Simas
  • Robson V. Pereira
  • Carolina A. Sabatini
Part of the Reviews in Fluorescence book series (RFLU, volume 2010)


Fluorescent dyes with photoinduced intramolecular charge-transfer (ICT) process driven by β-enaminone group capable to form resonance-assisted hydrogen bond (RAHB) structure were prepared from aromatic and heterocyclic precursor molecules, such as 1-aminopyrene, 9-amino acridine, and adenine. The electronic ground and excited-state spectral properties of these new dyes are modulated by the type of substituent in the β-enaminone group and solvent interaction as well. The excited-state properties and the complex kinetics observed are results of the interplay between charge and proton transfer, together with the presence of possible conformers or tautomers associated with the keto-amine/enol-imine equilibrium. The applications of such dye derivatives as molecular probes in radical copolymerization with acrylic monomers and as reporters in silver nanoparticles dye interaction in solution are also discussed.


Silver Nanoparticles Locally Excited Pyrene Derivative Purine Ring Biexponential Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Brazilian Science Foundation FAPESP and CNPq for financial support. ERS and CAS are graduate fellows of CAPES. RVP thanks FAPESP for postdoctoral fellowship.


  1. 1.
    Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular charge-transfer states and structure. Chem Rev 103:3899PubMedCrossRefGoogle Scholar
  2. 2.
    Zachariasse KA, von der Haar T, Hebecker A, Leinhos U, Kühnle W (1993) Intramolecular charge transfer in amino-benzonitriles: requirements for dual fluorescence. Pure Appl Chem 65(8):1745–1750CrossRefGoogle Scholar
  3. 3.
    Zachariasse KA, Grobys M, von der Haar T, Hebecker A, Ilichev YV, Jiang YB, Morawski O, Kühnle E (1996) Intramolecular charge transfer in the excited state. Kinetics and configurational changes. J Photochem Photobiol A Chem 102:59–70CrossRefGoogle Scholar
  4. 4.
    Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94: 2319–2358CrossRefGoogle Scholar
  5. 5.
    Sengupta PK, Kasha M (1979) Excited-state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem Phys Lett 68:382–385CrossRefGoogle Scholar
  6. 6.
    McMorrow D, Kasha M (1984) Intramolecular excited-state proton-transfer in 3-hydroxyflovone – hydrogen bonding solvent perturbations. J Phys Chem 88:2235–2243CrossRefGoogle Scholar
  7. 7.
    Sytnik A, Gormin D, Kasha M (1994) Interplay between excited-state intramolecular proton-transfer and charge-transfer in flavonols and their use as protein-binding-site fluorescence probes. Proc Natl Acad Sci USA 91:11968–11972PubMedCrossRefGoogle Scholar
  8. 8.
    Ormson SM, Brown RG, Vollmer F, Rettig W (1994) Switching between charge-transfer and proton-transfer emission in the excited-state of a substituted 3-hydroxyflavone. J Photochem Photobiol A Chem 81:65–72CrossRefGoogle Scholar
  9. 9.
    Vazquez SR, Rodriguez MCR, Mosquera M, Rodriguez-Prieto F (2007) Excited-state intramolecular proton transfer in 2-(3′-hydroxy-2′-pyridyl)benzoxazole. Evidence of coupled proton and charge transfer in the excited state of some o-hydroxyarylbenzazoles. J Phys Chem A 111:1814–1826PubMedCrossRefGoogle Scholar
  10. 10.
    Vazquez SR, Rodriguez MCR, Mosquera M, Rodriguez-Prieto F (2008) Rotamerism, tautomerism, and excited-state intramolecular proton transfer in 2-(4′-N, N-diethylamino-2′-hydroxyphenyl)benzimidazoles: novel benzimidazoles undergoing excited-state intramolecular coupled proton and charge transfer. J Phys Chem A 112:376–387PubMedCrossRefGoogle Scholar
  11. 11.
    Sanchez-Coronilla A, Balon M, Munoz MA, Hidalgo J, Carmona C (2008) Ground state isomerism in betacarboline hydrogen bond complexes: the charge transfer nature of its large Stokes shifted emission. Chem Phys 351:27–32CrossRefGoogle Scholar
  12. 12.
    Nie DB, Bian ZQ, Yu AC, Chen ZQ, Liu ZE, Huang CH (2008) Ground and excited state intramolecular proton transfer controlled intramolecular charge separation and recombination: a new type of charge and proton transfer reaction. Chem Phys 348:181–186CrossRefGoogle Scholar
  13. 13.
    Hsieh CC, Cheng YM, Hsu CJ, Chen KY, Chou PT (2008) Spectroscopy and femtosecond dynamics of excited-state proton transfer induced charge transfer reaction. J Phys Chem A 112:8323–8332PubMedCrossRefGoogle Scholar
  14. 14.
    Varne M, Samant V, Mondal JA, Nayak SK, Ghosh HN, Palit DK (2009) Ultrafast relaxation dynamics of the excited states of 1-amino-and 1-(N, N-dimethylamino)fluoren-9-ones. ChemPhysChem 10:2979–2994PubMedCrossRefGoogle Scholar
  15. 15.
    Mohammed OF, Kwon OH, Othon CM, Zewail AH (2009) Charge transfer assisted by collective hydrogen-bonding dynamics. Angew Chem Intern Ed 48:6251–6256CrossRefGoogle Scholar
  16. 16.
    Cukier RI, Nocera DG (1998) Proton-coupled electron transfer. Annu Rev Chem 49:337–369CrossRefGoogle Scholar
  17. 17.
    Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the β-diketone fragment. J Am Chem Soc 111:1023–1028CrossRefGoogle Scholar
  18. 18.
    Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) Covalent nature of the strong homonuclear hydrogen-bond: study of the O–H···O system by crystal-struture correlation methods. J Am Chem Soc 116:909–915CrossRefGoogle Scholar
  19. 19.
    Bertolasi V, Gilli P, Ferretti V, Gilli G (1995) Intermolecular N–H···O hydrogen bonds assisted by resonance. Heteroconjugated systems as hydrogen-bond-strengthening functional groups. Acta Cryst B 51:1004–1015CrossRefGoogle Scholar
  20. 20.
    Gilli P, Bertolasi V, Ferretti V, Gilli G (2000) Evidence for intramolecular N–H···O resonance-assisted hydrogen bonding in β-enaminones e related heterodynes. A combined crystal-structural, IR and NMR spectroscopic, and quantum-mechanical investigation. J Am Chem Soc 122: 10405–10417CrossRefGoogle Scholar
  21. 21.
    Gilli P, Bertolasi V, Pretto L, Ferretti V, Gilli G (2004) Covalent versus electrostatic nature of the strong hydrogen bond: discrimination among single, double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in β-diketone enol RAHB systems. J Am Chem Soc 126:3845–3855PubMedCrossRefGoogle Scholar
  22. 22.
    Bertolasi V, Pretto L, Ferretti V, Gilli P, Gilli G (2006) Interplay between steric and electronic factors in determining the strength of intramolecular N–H···O resonance-assisted hydrogen bonds in β-enaminones. Acta Cryst B62:1112–1120Google Scholar
  23. 23.
    Pereira RV, Gehlen MH (2005) Excited-state intramolecular charge transfer in 9-aminoacridine derivative. J Phys Chem A 109:5978–5983PubMedCrossRefGoogle Scholar
  24. 24.
    Pereira RV, Gehlen MH (2006) Photoinduced intramolecular charge transfer in 9-aminoacridinium derivatives assisted by intramolecular H-bond. J Phys Chem A 110:7539–7546PubMedCrossRefGoogle Scholar
  25. 25.
    Pereira RV, Gehlen MH (2006) H-bonding assisted intramolecular charge transfer in 1-aminopyrene derivatives. Chem Phys Lett 426:311–317CrossRefGoogle Scholar
  26. 26.
    Misra R, Mandal A, Mukhopadhyay M, Maity DK, Bhattacharyya SP (2009) Spectral signatures of intramolecular charge transfer process in β-enaminones: a combined experimental and theoretical analysis. J Phys Chem B 113:10779–10791PubMedCrossRefGoogle Scholar
  27. 27.
    Glasbeek M, Zhang H (2004) Femtosecond studies of salvation and intramolecular configurational dynamics of fluorophores in liquid solution. Chem Rev 104:1929–1954PubMedCrossRefGoogle Scholar
  28. 28.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer New York, NYGoogle Scholar
  29. 29.
    Yang JS, Chiou SY, Liau KLJ (2002) Am Chem Soc 124:2518CrossRefGoogle Scholar
  30. 30.
    Oliveira HPM, Camargo AJ, de Macedo LGM, Gehlen MH, da Silva ABFJ (2004) Mol Struct 674:213Google Scholar
  31. 31.
    Callis PR (1983) Electronic states and luminescence of nucleic acid systems. Annu Rev Phys Chem 34:329–357CrossRefGoogle Scholar
  32. 32.
    Serrano-Andrés L, Merchán M, Borin AC (2006) Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry. Proc Acad Natl Soc 103:8691–8696CrossRefGoogle Scholar
  33. 33.
    Stazger H, Townsend D, Zgierski MZ, Patchkovskii S, Ullrich S, Stolow A (2006) Primary processes underlying the photostability of isolated DNA bases: adenine. Proc Acad Natl Soc 103:10196–10201CrossRefGoogle Scholar
  34. 34.
    Serrano-Andrés L, Merchán M, Borin AC (2006) A three-state model for the photophysics os adenine. Chem Eur J 12:6559–6571PubMedCrossRefGoogle Scholar
  35. 35.
    Perun S, Sobolewski W, Domcke W (2005) Photostability of 9H-adenine: mechanisms of radiationless deactivation of the lowest excited singlet states. Chem Phys 313:107–112CrossRefGoogle Scholar
  36. 36.
    Marian CMJ (2005) A new pathway for the rapid decay of electronically excited adenine. Chem Phys 122:104314–104314-13Google Scholar
  37. 37.
    Pancur T, Schwalb NK, Renth F, Temps F (2005) Femtosecond fluorescence up-conversion spectroscopy of adenine and adenosine: experimental evidence for the πσ* state? Chem Phys 313:199–212CrossRefGoogle Scholar
  38. 38.
    Pereira RV, Gehlen MH (2007) Polymerization and conformational transition of poly(methacrylic acid) probed by electronic spectroscopy of aminoacridines. Macromolecules 40:2219–2223CrossRefGoogle Scholar
  39. 39.
    Pereira RV, Ferreira APG, Gehlen MH (2008) Fluorescent probes with malononitrile side group in methyl methacrylate copolymers. J Photochem Photobiol A Chem 198:69–74CrossRefGoogle Scholar
  40. 40.
    Pereira RV, Gehlen MH (2006) Spectroscopy of auramine fluorescent probes free and bound to poly(methacrylic acid). J Phys Chem B 110:6537–6542PubMedCrossRefGoogle Scholar
  41. 41.
    Loufty RO (1981) High-conversion polymerization fluorescence probes. 1. Polymerization of methyl methacrylate. Macromolecules 14:270–275CrossRefGoogle Scholar
  42. 42.
    Pankasem S, Biscoglio M, Thomas JK (2000) Photophysics of pyrenyl acrylic acid and its methyl ester. A spectroscopic method to monitor polymerization and surface properties. Langmuir 16:3620–3625CrossRefGoogle Scholar
  43. 43.
    Paczkowski J, Neckers DC (1991) Twisted intramolecular charge-transfer phenomenon as a quantitative probe of polymerization kinetics. Macromolecules 24:3013–3016CrossRefGoogle Scholar
  44. 44.
    Olea AF, Thomas JK (1989) Fluorescence studies of the conformational changes of poly(methacrylic acid) with pH. Macromolecules 22:1165–1169CrossRefGoogle Scholar
  45. 45.
    Jones G II, Rahman MA (1994) Fluorescence properties of coumarin laser dyes in aqueous polymer media: chromophore isolation in poly(methacrylic acid) hypercoils. J Phys Chem 98:13028–13037CrossRefGoogle Scholar
  46. 46.
    Bednár B, Morawetz H, Shafer JA (1985) Kinetics of the conformational transition of poly(methacrylic acid) after changes of its degree of ionization. Macromolecules 18:1940–1944CrossRefGoogle Scholar
  47. 47.
    Lakowicz JR (2001) Radiative decay engineering. Anal Biochem 298:1–24PubMedCrossRefGoogle Scholar
  48. 48.
    Aslan K, Cryczynski I, Malicka J, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62PubMedCrossRefGoogle Scholar
  49. 49.
    Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J Fluoresc 15:643–654PubMedCrossRefGoogle Scholar
  50. 50.
    Machulek Junior A, De Oliveira HPM, Gehlen MH (2003) Preparation of silver nanoprisms using poly(N-vinyl-2-pyrrolidone) as a colloid stabilizing agent and the effect of silver nanopartilces on the photophysical properties of cationic dyes. Photochem Photobiol Sci 2:921–925PubMedCrossRefGoogle Scholar
  51. 51.
    Sabatini CA, Pereira RV, Gehlen MH (2007) Fluorescence modulation of acridine and ­coumarin dyes by silver nanoparticles. J Fluoresc 17:377–382PubMedCrossRefGoogle Scholar
  52. 52.
    Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc 14:331–341PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Marcelo H. Gehlen
    • 1
    Email author
  • Emanuelle R. Simas
    • 1
  • Robson V. Pereira
    • 1
  • Carolina A. Sabatini
    • 1
  1. 1.Instituto de Química de São Carlos, Universidade de São PauloSão CarlosBrazil

Personalised recommendations