Novel Metal-Based Luminophores for Biological Imaging

  • David LloydEmail author
  • Michael P. Coogan
  • Simon J. A. Pope
Part of the Reviews in Fluorescence book series (RFLU, volume 2010)


This review aims to summarise key recent developments regarding the use of luminescent metal complexes in biological imaging. The photophysical advantages of d- and f-block complexes are discussed and specific examples of cellular imaging are described through confocal fluorescence microscopy studies. Issues of complex design and specific organelle targeting are considered together with the use of a phosphorescent ruthenium complex to monitor intracellular oxygen levels in real-time, via microscopy and time-resolved luminescence methods. The development of near-IR-emissive probes based on lanthanide complexes are also briefly presented, together with strategies for their application as responsive reporters in a biological context.


Lanthanide Complex Biological Imaging Luminescence Lifetime Formyl Peptide Receptor Rhenium Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Collaborators in Cardiff who cultured organisms and cells, synthesised new luminophores and obtained optical images were Dr. Anthony J. Hayes, Dr. Jonathan B. Court, Dr. Coralie O. Millet, Dr. Victoria Gray, Dr. Vanesa Fernandez-Moreira, Dr. Sion H. Lloyd, Ms. Flora L. Thorp-Greenwood Dr. Michael Andrews, Ms. Jennifer E. Jones, Ms. Catrin F. Williams and Mr. Marc Isaacs. Expert advice and preparations of nanoparticles were provided by Dr. Lars Folke Olsen, Dr. Allan Poulsen and Ms. Anita Lunding of the University of Southern Denmark at Odense.


  1. 1.
    DeGraff BA, Demas JN (2005) Luminescence-based oxygen sensors. In: Geddes J and Lakowicz JR (eds) Reviews in fluorescence, vol 2. Springer, New York, pp 125–151Google Scholar
  2. 2.
    Amoroso AJ, Coogan MP, Dunne JE, Fernández-Moreirá V, Hess JB, Hayes AJ, Lloyd D, Millet CO, Pope SJA, Williams C (2007) Rhenium fac-tricarbonyl bisimine complexes: biologically useful fluorochromes for cell imaging applications. Chem Commun 29:3066–3068CrossRefGoogle Scholar
  3. 3.
    Amoroso AJ, Arthur RJ, Coogan MP, Court JB, Fernández-Moreira V, Hayes AJ, Lloyd D, Millet CO, Pope SJA (2008) 3-Chloromethylpyrididyl bipyridine fac-tricarbonyl rhenium: a thiol-reactive luminophore for fluorescence microscopy accumulates in mitochondria. New J Chem 32:1097–1102CrossRefGoogle Scholar
  4. 4.
    Lo KK, Louie M, Sze K, Lau J (2008) Rhenium(I) polypyridine biotin isothiocyanate complexes as the first luminescent tiotinylation reagents: synthesis, photophysical properties, biological labelling, cyto toxicity and imaging studies. Inorg Chem 47:602–611PubMedCrossRefGoogle Scholar
  5. 5.
    Lo KK, Lee TKM, Lo JSY, Poon WL, Cheng SH (2008) Luminescent biological probes derived from ruthenium (II) estradiol polypyridine complexes. Inorg Chem 47:200–208PubMedCrossRefGoogle Scholar
  6. 6.
    Yu M, Zhao Q, Shi L, Li F, Zhou Z, Yang H, Yi T, Huang C (2008) Cationic iridium (111) complexes for phosphorescence staining in the cytoplasm of living cells. Chem Commun 18:2115–2117CrossRefGoogle Scholar
  7. 7.
    Montgomery CP, Murray BS, New EJ, Pal R, Parker D (2009) Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. Accounts Chem Res 42:925CrossRefGoogle Scholar
  8. 8.
    Bünzli JCG, Chauvin AS, Vandevyver CDB, Bo S, Comby S (2008) Lanthanide bimetallic helicates for in vitro imaging and sensing. Fluorescence methods and applications: spectro­scopy, imaging, and probes. Book series. Ann N Y Acad Sci 1130:97PubMedCrossRefGoogle Scholar
  9. 9.
    Botchway SW, Charnley M, Haycock JW, Parker AW, Rochester DL, Weinstein JA, Williams JAG (2008) Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes. Proc Natl Acad Sci USA 105:16071PubMedCrossRefGoogle Scholar
  10. 10.
    Eliseeva SV, Bünzli JCG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189PubMedCrossRefGoogle Scholar
  11. 11.
    Faulkner S, Pope SJA, Burton-Pye BP (2005) Lanthanide complexes for luminescence imaging applications. Appl Spec Rev 40:1CrossRefGoogle Scholar
  12. 12.
    Lowry MS, Hudson WR, Pascal RA, Bernhard S (2004) Accelerated luminophore discovery through combinatorial synthesis. J Am Chem Soc 126:14129–14135PubMedCrossRefGoogle Scholar
  13. 13.
    Stufkens DJ, Vlcek A Jr (1998) Ligand-dependent excited state behaviour of Re(I) and Ru(II) carbonyl–diimine complexes. Coord Chem Rev 177:127–179CrossRefGoogle Scholar
  14. 14.
    Juris A, Balzani V, Barigellatti F, Campagna S, Belser P, von Zelewsky A (1998) Ru(II) Polypyridene complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord Chem Rev 84:85–227CrossRefGoogle Scholar
  15. 15.
    Beer PD, Hayes EJ (2003) Transition metal and organometallic anion complexation agents. Coord Chem Rev 240:167–189CrossRefGoogle Scholar
  16. 16.
    Kneas KA, Xu W, Demas JN, DeGraff BA, Zipp AP (1998) Luminescence-based oxygen sensors: ReL(CO)3Cl and ReL(CO)3CN complexes on copolymer supports. J Fluoresc 8:295–300CrossRefGoogle Scholar
  17. 17.
    Reitz GA, Demas JN, DeGraff BA, Stephens EM (1998) Inter- and intramolecular excited-state interactions of surfactant-active rhenium(I) photosensitizers. J Am Chem Soc 110:5051–5059CrossRefGoogle Scholar
  18. 18.
    Coogan MP, Fernandez-Moreira V, Hess JB, Pope SJA, Williams C (2009) Rhenium fac-tricarbonyl bisimine complexes: luminescence modulation by hydrophobically driven intramolecular interactions. New J Chem 33:1094–1107CrossRefGoogle Scholar
  19. 19.
    Coogan MP, Fernández-Moreira V, Kariuki BM, Pope SJA (2009) Thorp-Greenwood, F.L. A rhenium tricarbonyl 4′-oxo-terpy trimer as a luminescent molecular vessel with a removable silver stopper Angew. Chem Int Ed Eng 48:4965–4968CrossRefGoogle Scholar
  20. 20.
    Mullice LA, Pope SJA (2010) The development of responsive, luminescent lifetime probes based upon axially functionalised fac-[Re(CO)3(di-imine)(L)]+ complexes. Dalton Trans 39:5908–5917PubMedCrossRefGoogle Scholar
  21. 21.
    Stephenson KA, Banerjee SR, Besenger T, Sogbein OO, Levadala MK, McFarlane N, Lemon JA, Boreham DR, Maresca KP, Brennan JD, Babich JW, Zubieta J, Valliant JF (2004) Bridging the gap between in vitro and in vivo imaging: isostructural Re and 99mTc complexes for correlating fluorescence and radioimaging studies. J Am Chem Soc 126:8598PubMedCrossRefGoogle Scholar
  22. 22.
    Liu S, Edwards DS (1999) 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev 99:2235–2268PubMedCrossRefGoogle Scholar
  23. 23.
    Viola-Villegas N, Rabideau AE, Bartholoma M, Zubieta J, Doyle RP (2009) Targeting the cubilin receptor through the vitamin B12 uptake pathway: cytotoxicity and mechanistic insight through fluorescent Re(I) delivery. J Med Chem 52:5253–5261PubMedCrossRefGoogle Scholar
  24. 24.
    Fernandez-Moreira V, Thorp-Greenwood FL, Coogan MP (2010) Application of d 6 transition metal complexes in fluorescent cell imaging. Chem Commun 46:186–202CrossRefGoogle Scholar
  25. 25.
    Minamikawa T, Sriratana A, Williams DA, Bowser J, Hill S, Nagley P (1999) Chloromethyl-X-rosamine (MitoTracker Red) photosensitises mitochondria and induces apoptosis in intact human cells. J Cell Sci 112:2419–2430PubMedGoogle Scholar
  26. 26.
    Dattelbaum JD, Abugo OO, Lakowicz JR (2000) Synthesis and characterization of a sulfhydryl-reactive rhenium metal–ligand complex. Bioconjug Chem 11:33–536CrossRefGoogle Scholar
  27. 27.
    Castellano FN, Dattelbaum JD, Lakowicz JR (1998) Long-lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups. Anal Biochem 255:165–170PubMedCrossRefGoogle Scholar
  28. 28.
    Soule HD, Vazquez J, Long A, Albert S, Brennan M (1973) (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1413PubMedGoogle Scholar
  29. 29.
    Whitaker JE, Moore PL, Haugland RP, Haugland RP (1991) Dihydrotetramethylrosamine: a long wavelength, fluorogenic peroxidase substrate evaluated in vitro and in a model phagocyte. Biochem Biophys Res Commun 175:387–393PubMedCrossRefGoogle Scholar
  30. 30.
    Lo KK-W, Louie M-W, Lau SK-S, S-Y J (2008) Rhenium(I) polypyridine biotin isothiocyanate complexes as the first luminescent biotinylation reagents: synthesis, photophysical properties, biological labeling, cytotoxicity, and imaging studies. Inorg Chem 47:602–611PubMedCrossRefGoogle Scholar
  31. 31.
    Louie MW, Lam MH-C, Lo KK-W (2009) Luminescent polypyridinerhenium(I) bis-biotin complexes as crosslinkers for avidin. Eur J Inorg Chem 28:4265–4273CrossRefGoogle Scholar
  32. 32.
    Louie M-W, Liu H-W, Lam MH-C, Lau T-C, Lo KK-W (2009) Novel luminescent tricarbonylrhenium(I) polypyridine tyramine-derived dipicolylamine complexes as sensors for zinc(II) and cadmium(II) Ions. Organometallics 28:4297–4307CrossRefGoogle Scholar
  33. 33.
    Lloyd D (2002) Noninvasive methods for the investigation of organisms at low oxygen levels. Adv Appl Microbiol 51:155–183PubMedCrossRefGoogle Scholar
  34. 34.
    Gnaiger E, Forstner H (eds) (1983) Polarographic oxygen sensors. Springer Verlag, BerlinGoogle Scholar
  35. 35.
    Coogan MP, Court JB, Gray VL, Hayes AJ, Lloyd SH, Millet CO, Pope SJA, Lloyd D (2010) Probing intracellular oxygen by quenched phosphorescent lifetimes of nanoparticles containing polyacrylamide-embedded [Ru (dpp(SO3Na)2)3] Cl2. Photochem Photobiol Sci 9(1):103–109PubMedCrossRefGoogle Scholar
  36. 36.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417: 1–13PubMedCrossRefGoogle Scholar
  37. 37.
    Mik EG, Ince C, Eerbeek O, Heinen A, Stap J, Hooibrink B, Schumacher CA, Balestra GM, Johannes T, Beck JF, Nieuwenhuis ABF, vanHorssen P, Spaan JA, Zuurbier CJ (2009) Mitochondrial oxygen tension within the heart. J Mol Cell Cardiol 46:943–951PubMedCrossRefGoogle Scholar
  38. 38.
    Wilhelm E, Battino OR, Woodcock RJ (1977) Low pressure solubility of gases in liquid water. Chem Rev 77:219–250CrossRefGoogle Scholar
  39. 39.
    Wittenberg BA, Wittenberg JB (1989) Transport of oxygen in muscle. Ann Rev Physiol 51:857–878CrossRefGoogle Scholar
  40. 40.
    Chance B, Noka S, Warren W, Yurtsever G (2005) Mitochondrial NADH as the bell-wether of tissue O2 delivery. Adv Exp Biol Med 566:231–262CrossRefGoogle Scholar
  41. 41.
    Lloyd D, Mellor H, Williams JL (1983) Oxygen affinity of the respiratory chain of Acanthamoeba castellanii. Biochem J 17:143–146Google Scholar
  42. 42.
    Aon MA, Cortassa S, Marban S, O’Rourke B (2005) Synchronized whole cell oscillations in mitochondrial metabolism triggered by local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278:44735–44744CrossRefGoogle Scholar
  43. 43.
    Lemar KL, Aon MA, Cortassa S, O’Rourke B, Müller CT, Lloyd D (2007) Diallyl disulphide depletes glutathione in Candida albicans oxidative stress-mediated cell death studied by two-photon microscopy. Yeast 24:695–706PubMedCrossRefGoogle Scholar
  44. 44.
    Aon MA, Cortassa S, O’Rourke B (2010) Redox-optimized ROS balance: a unifying hypo­thesis. Biochim Biophys Acta 1797(6–7):865–877PubMedGoogle Scholar
  45. 45.
    Jones DP, Mason HS (1978) Gradients of O2 in hepatocytes. J Biol Chem 253:4874–4880PubMedGoogle Scholar
  46. 46.
    Vanderkooi M, Wright WW, Erecinska M (1990) Oxygen gradients in mitochondria examined with delayed luminescence from excited-state triplet probes. Biochemistry 29:5332–5338PubMedCrossRefGoogle Scholar
  47. 47.
    Vinogradov SA, Lo LW, Jenkins WT, Evans SM, Koch C, Wilson DF (1996) Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infra red phosphors. Biophys J 70:1609–1617PubMedCrossRefGoogle Scholar
  48. 48.
    Mik EG, Johannes T, Zuurbier C, Jeinen A, Houben-Weerts JH, Balestra GM, Stap J, Beek JF, Ince C (2008) In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J 95:3977–3990PubMedCrossRefGoogle Scholar
  49. 49.
    Carraway ER, Demas JN, Degraff BA, Bacon JR (1991) Photophysics and photochemistry of oxygen sensors based on luminescent transition metal complexes. Anal Chem 63:337–342CrossRefGoogle Scholar
  50. 50.
    Mik EG, van Leeuwen TG, Raat NJ, Ince C (2004) Quantitative determination of localised oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements. J Appl Physiol 97:1962–1969PubMedCrossRefGoogle Scholar
  51. 51.
    Vaughan WM, Weber G (1970) Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the environment. Biochemistry 9:464–473PubMedCrossRefGoogle Scholar
  52. 52.
    Knopp JA, Longmuir IS (1972) Intracellular measurement of oxygen by quenching of fluorescence of pyrenebutyric acid. Biochim Biophys Acta 279:393–397PubMedCrossRefGoogle Scholar
  53. 53.
    Benson DH, Knopp JA, Longmuir IS (1980) Intracellular oxygen measurements of mouse liver cells using quantitative fluorescence video microscopy. Biochim Biophys Acta 591: 187–197PubMedCrossRefGoogle Scholar
  54. 54.
    Mulazzani QG, Sun H, Hoffman MZ, Ford WE, Rodgers MAJ (1994) Quenching of the excited states of ruthenium (11)-diimine complexes by oxygen. J Phys Chem 98:1145–1150CrossRefGoogle Scholar
  55. 55.
    Gafney HD, Adamson AW (1972) Excited state Ru(bipyr)32+ as an electron-transfer reductant. J Am Chem Soc 94:8238CrossRefGoogle Scholar
  56. 56.
    Watts RJ, Crosby GA (1971) Spectroscopic characterization of complexes of ruthenium (II) and iridium (II) with 4, 4′diphenyl 2, 2′bipyridine and 4,7-diphenyl-1,10-pehenanthroline. J Am Chem Soc 93:3184–3188CrossRefGoogle Scholar
  57. 57.
    Winterle JS, Kliger DS, Hammond GS (1976) Mechanisms of photochemical reactions in solution. J Am Chem Soc 98:3719CrossRefGoogle Scholar
  58. 58.
    Orellana G, Garcia-Fresnadillo D (2004) Optical sensors: industrial, environmental and diagnostic applications, vol 1. Springer, Berlin and Heidelberg, pp 309–357Google Scholar
  59. 59.
    Zahir KO, Haim AJ (1992) Yields of singlet dioxygen produced by the reaction between the excited state of trio (bipyridine) ruthenium (II) and triplet dioxygen in various solvents. J Photochem Photobiol A Chem 63:167–172CrossRefGoogle Scholar
  60. 60.
    Tan-Sien-Hec L, Jacquet L, Kirsch-deMesmacker A (1994) Quenching of excited polyazaaromatic Ru(11) complexes by oxygen: evidence for an electron transfer process by photo electrochemical study. J Photochem Photobiol A Chem 8:169–176CrossRefGoogle Scholar
  61. 61.
    Bacon JR, Demas JN (1987) Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex. Anal Chem 59:2780–2785CrossRefGoogle Scholar
  62. 62.
    Garcia-Fresnadillo D, Georgiadou Y, Oranella G, Braun AM, Oliveros E (1996) Singlet-Oxygen (‘Dg) production by ruthenium complexes containing poly aza heterocyclic ligands in methanol and in water. Helvet Chim Acta 79:1222–1238CrossRefGoogle Scholar
  63. 63.
    Kuimova MK, Yahioglu G, Ogilby PR (2009) Singlet oxygen in a cell: spatially depended lifetimes and quenching rate constants. J Am Chem Soc 131:332–340PubMedCrossRefGoogle Scholar
  64. 64.
    Breitenbach T, Kuimova MK, Gbur P, Hatz S, Schack NB, Pedersen BW, Lambert JDC, Poulsen L, Ogilby PR (2009) Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells. Photochem Photobiol Sci 8:442–452PubMedCrossRefGoogle Scholar
  65. 65.
    Hatz S, Poulsen L, Ogilby PR (2008) Time-resolved singlet oxygen phosphoresences measurements from photosensitized experiments in single cells: effects of oxygen diffusion and oxygen concentration. Photochem Photobiol 84:1284–1290PubMedCrossRefGoogle Scholar
  66. 66.
    Finikova OS, Lebedev AY, Aprelev A, Troxler T, Gao F, Garnacho C, Muro S, Hochstrasser RM, Vinogradov SA (2008) Oxygen microscopy by two-photon-excited phosphorescence. Chem Phys Chem 9:1673–1679PubMedCrossRefGoogle Scholar
  67. 67.
    Yaseen MA, Srinivasan VJ, SakadžIć S, Wu W, Ruvinskaya S, Vinogradov SA, Boas DA (2009) Optical monitoring of oxygen tension in cortical microvessels with confocal micro­scopy. Opt Express 17:22341–22350PubMedCrossRefGoogle Scholar
  68. 68.
    Payra P, Dutta PK (2003) Development of a dissolved oxygen sensor using tris(bipyridyl)ruthenium (II) complexes entrapped in highly siliceous zeolites. Microporous Mesoporous Mater 64:109–118CrossRefGoogle Scholar
  69. 69.
    Clark HA, Hoyer M, Parus S, Philbert MA, Kopelman R (1999) Optochemical nanosensors and subcellular applications in living cells. Mikrochim Acta 131:121–128CrossRefGoogle Scholar
  70. 70.
    Buck SM, Koo Y-EL, Park E, Xu H, Philbert MA, Brasuel MA, Kopelman R (2004) Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. Curr Opin Chem Biol 8:540–546PubMedCrossRefGoogle Scholar
  71. 71.
    Poulsen AK, Arleth L, Almdal K, Scharff-Poulsen AM (2007) Unusually large acrylamide induced effect on the droplet size in AOT/Brij30 water-in-oil microemulsions. J Colloid Interf Sci 306:143–153CrossRefGoogle Scholar
  72. 72.
    Poulsen AK, Scharff-Poulsen AM, Olsen LF (2007) Horseradish peroxidase embedded in polyacrylamide nanoparticles enables optical detection of reactive oxygen species. Anal Biochem 366:29–36PubMedCrossRefGoogle Scholar
  73. 73.
    Castellano FN, Lakowicz JR (1998) A water-soluble luminescence oxygen sensor. Photochem Photobiol 67:179–183PubMedCrossRefGoogle Scholar
  74. 74.
    Sud D, Zhong W, Beer DG, Mycek M-A (2006) Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models. Opt Express 14:4412–4426PubMedCrossRefGoogle Scholar
  75. 75.
    Sud D, Mycek M-A (2009) Calibration and validation of an optical sensor for intracellular measurements. J Biol Optics 14(2):020506CrossRefGoogle Scholar
  76. 76.
    Bradley M, Alexander L, Duncan K, Chennaoui M, Jones AC, Sanchez-Martin RM (2008) pH sensing in living cells using fluorescent microspheres. Bioorg Med Chem Lett 18:313–317PubMedCrossRefGoogle Scholar
  77. 77.
    Owen DM, Lanigan PM, Dunsby C, Munro I, Grant D, Neil MAA, French PMW, Magee AI (2006) Fluorescence lifetime imaging provides enhanced contrast when imaging the phase sensitive dye di-4-ANNEPPDHQ in model membranes and living cells. Biophys J 90:L80–82PubMedCrossRefGoogle Scholar
  78. 78.
    Levitt JA, Matthews DR, Ameer-Beg SM, Suhling K (2009) Fluorescence lifetime and polarization-resolved imaging in cell biology. Curr Opin Biotechnol 20:28–36PubMedCrossRefGoogle Scholar
  79. 79.
    Manjon F, Garcia-Fresnadillo D, Orellana G (2009) Water disinfection with Ru (ii) photosensitisers supported on ionic porous silicones. Photochem Photobiol Sci 8:926–932PubMedCrossRefGoogle Scholar
  80. 80.
    Ramshesh VK, Lemasters JJ (2008) Pinhole shifting lifetime imaging microscopy. J Biomed Opt 13(6):064001PubMedCrossRefGoogle Scholar
  81. 81.
    Parker D, Williams JAG (1996) Getting excited about lanthanide complexation chemistry. J Chem Soc Dalton Trans 3613–3628Google Scholar
  82. 82.
    Gawryszewska P, Sokolnicki J, Legendziewicz J (2005) Photophysics and structure of selected lanthanide compounds. Coord Chem Rev 249:2489–2509CrossRefGoogle Scholar
  83. 83.
    Beeby A, Clarkson IM, Dickins RS, Faulkner S, Parker D, Royle L, de Sousa AS, Williams JAG, Woods M (1999) Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J Chem Soc Perkin Trans 2:493Google Scholar
  84. 84.
    Pope SJA (2007) Dual-emissive complexes: visible and near-infrared luminescence from bis-pyrenyl lanthanide(III) complexes. Polyhedron 26:4818CrossRefGoogle Scholar
  85. 85.
    Andrews M, Laye RH, Harding LP, Pope SJA (2008) Quinoxaline sensitised lanthanide ion luminescence: syntheses, spectroscopy and X-ray crystal structure of Na{1,4,7-tris[(N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane-10-(2-methylquinoxaline)}I-3 C7H8. Polyhedron 27:2365CrossRefGoogle Scholar
  86. 86.
    Andrews M, Ward BD, Laye RH, Kariuki BM, Pope SJA (2009) Sensitized lanthanide-ion luminescence with aryl-substituted N-(2-nitrophenyl)acetamide-derived chromophores. Helvet Chim Acta 92:2159CrossRefGoogle Scholar
  87. 87.
    Edward R (2009) Use of DNA-specific anthraquinone dyes to directly reveal cytoplasmic and nuclear boundaries in live and fixed cells. Mol Cells 27:391–396PubMedCrossRefGoogle Scholar
  88. 88.
    Paul G, Palumbo M, Antonello C, Meloni GA, Marciani-Magno S (1986) A search for potential antitumor agents: biological effects and DNA binding of a series of anthraquinone derivatives. Mol Pharmacol 29:211–217Google Scholar
  89. 89.
    He ZE, He MF, Ma SC, But PPH (2009) Anti-angiogenic effects of rhubarb and its anthraquinone derivatives. J Ethnopharmacol 121:313–317PubMedCrossRefGoogle Scholar
  90. 90.
    Pickhardt M, Gazova Z, von Bergen M, Khlistunova I, Wang YP, Hascher A, Mandelkow EM, Biernat J, Mandelkow E (2005) Anthroquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J Biol Chem 280:3628–3635PubMedCrossRefGoogle Scholar
  91. 91.
    Jones JE, Pope SJA (2009) Sensitised near-IR lanthanide luminescence exploiting anthraquinone-derived chromophores: syntheses and spectroscopic properties. Dalton Trans 39:8421–8425PubMedCrossRefGoogle Scholar
  92. 92.
    dos Santos CMG, Harte AJ, Quinn SJ, Gunnlaugsson T (2008) Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies. Coord Chem Rev 252:2512CrossRefGoogle Scholar
  93. 93.
    Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549PubMedCrossRefGoogle Scholar
  94. 94.
    Pope SJA, Laye RH (2006) Design, synthesis and photophysical studies of an emissive, europium based, sensor for zinc. Dalton Trans 25:3108–3113PubMedCrossRefGoogle Scholar
  95. 95.
    Andrews M, Amoroso AJ, Harding LP, Pope SJA (2010) Responsive, di-metallic lanthanide complexes of a piperazine-bridged bis-macrocyclic ligand: modulation of visible luminescence and proton relaxivity. Dalton Trans 39:3407–3411PubMedCrossRefGoogle Scholar
  96. 96.
    Coldwell JB, Felton CE, Harding LP, Moon R, Pope SJA, Rice CR (2006) Barium induced modulation of NIR emission in a neodymium cryptate complex. Chem Commun 5048–5050Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • David Lloyd
    • 1
    Email author
  • Michael P. Coogan
    • 2
  • Simon J. A. Pope
    • 2
  1. 1.Department of MicrobiologyCardiff Schools of Bioscience, Cardiff UniversityCardiffUK
  2. 2.Cardiff School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations