Building 3D Nanostructured Devices by Self-Assembly

Chapter

Abstract

It is extremely challenging to create 3D nanostructured devices using conventional lithographic processing. Lithographic patterning techniques such as imprint or electron beam lithography allow precise structuring, but can only be implemented in an inherently 2D manner. It is also challenging to translate 3D microscale patterning techniques such as stereolithography, direct writing, and two-photon machining down to the nanoscale. In a process that draws inspiration from biological assembly, scientists and engineers are seeking to construct nanostructured devices from the bottom-up. Apart from numerous elegant methods to grow nanostructures from atoms, the spontaneous or directed assembly of ordered nanostructures from larger molecular or synthetic units provides an attractive route to create functional nanostructured devices. In this chapter, we focus on these self-assembling methods for bottom-up fabrication of 3D nanostructured devices. We review strategies to self-assemble molecular and synthetic devices. Molecular self-assembly with surfactants, peptides, proteins, and nucleotides provides considerable variability in terms of the different functional groups that can be utilized. However, since these structures are susceptible to fall apart at elevated temperatures and on dehydration, there is a need to develop alternative self-assembly methods using physical forces and with components such as metals, inorganic semiconductors, and dielectrics, especially for electronic and optical applications. We discuss these approaches with a focus on methods that enable the inclusion of precise patterns in all 3D and specifically on a more deterministic form of self-assembly that is often referred to as self-folding. Here, templates curve, bend, and fold spontaneously, thereby enabling 2D structures to be transformed into 3D structures. We review limitations and challenges associated with these self-assembly methodologies and future embodiments, such as enabling reconfigurability and machine-based function on the nanoscale.

Keywords

Nanotechnology Self-folding Origami Self-assembly 

Notes

Acknowledgments

We wish to acknowledge financial support from the NSF (Grant CMMI-0854881) and the NIH (Grant DP2-OD004346). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.

References

  1. 1.
    R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy, G. Dewey, 30 nm physical gate length CMOS transistors with 1.0 ps n-MOS and 1.7 ps p-MOS gate delays. International Electron Devices Meeting Technical Digest 2000, IEEE, San Francisco, CA, pp. 45–48, 2000Google Scholar
  2. 2.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272, 85 (1996)CrossRefGoogle Scholar
  3. 3.
    R.M. Langford, P.M. Nellen, J. Gierak, Y. Fu, Focused ion beam micro- and nanoengineering. MRS Bull. 32, 417 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Roy, Fabrication of micro- and nano-structured materials using mask-less processes. J. Phys. D: Appl. Phys. 40, R413 (2007)CrossRefGoogle Scholar
  5. 5.
    J.P. Rolland, B.W. Maynor, L.E. Euliss, A.E. Exner, G.M. Denison, J.M. DeSimone, Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 10096 (2005)CrossRefGoogle Scholar
  6. 6.
    R.P. Feynman, There’s plenty of room at the bottom. J. Microelectromech. Syst. 1, 60 (1992)CrossRefGoogle Scholar
  7. 7.
    T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Properties of arrays of metallic nanowires. Science 261, 1316 (1993)CrossRefGoogle Scholar
  8. 8.
    M.P. Zach, K.H. Ng, R.M. Penner, Molybdenum nanowires by electrodeposition. Science 290, 2120 (2000)CrossRefGoogle Scholar
  9. 9.
    C.R. Martin, Membrane-based synthesis of nanomaterials. Chem. Mater. 8, 1739 (1996)CrossRefGoogle Scholar
  10. 10.
    J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one-dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999)CrossRefGoogle Scholar
  11. 11.
    S. Iijima, Carbon nanotubes: past, present, and future. Phys. B: Condens. Matter 323, 1 (2002)CrossRefGoogle Scholar
  12. 12.
    D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J.B. Li, L.W. Wang, A.P. Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190 (2004)CrossRefGoogle Scholar
  13. 13.
    B.D. Gates, Q. Xu, J.C. Love, D.B. Wolfe, G.M. Whitesides, Unconventional nanofabrication. Ann. Rev. Mater. Res. 34, 339 (2004)CrossRefGoogle Scholar
  14. 14.
    H. Ringsdorf, Hermann Staudinger and the future of polymer research jubilees – beloved occasions for cultural piety. Angew. Chem. 43, 1064 (2004)Google Scholar
  15. 15.
    J.M. Lehn, Perspectives in supramolecular chemistry – from molecular recognition towards molecular information processing and self-organization. Angew. Chem. 29, 1304 (1990)Google Scholar
  16. 16.
    A. Klug, The tobacco mosaic virus particle: structure and assembly. Phil. Trans. R. Soc. Lond. B 354, 531 (1999)CrossRefGoogle Scholar
  17. 17.
    H. Fraenkel-Conrat, R.C. Williams, Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc. Natl. Acad. Sci. 41, 690 (1955)CrossRefGoogle Scholar
  18. 18.
    X.Y. Ling, D.N. Reinhoudt, J. Huskens, From supramolecular chemistry to nanotechnology: assembly of 3D nanostructures. Pure Appl. Chem. 81, 2225 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Cölfen, S. Mann, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. 42, 2350 (2003)Google Scholar
  20. 20.
    D.H. Cao, K. Chen, J. Fan, J. Manna, B. Olenyuk, J.A. Whiteford, P.J. Stang, Supramolecular chemistry and molecular design: self-assembly of molecular squares. Pure Appl. Chem. 69, 1979 (1997)CrossRefGoogle Scholar
  21. 21.
    L.E. Levine, G.G. Long, J. Ilavsky, R.A. Gerhardt, R. Ou, C.A. Parker, Self-assembly of carbon black into nanowires that form a conductive three dimensional micronetwork. Appl. Phys. Lett. 90, 014101 (2007)CrossRefGoogle Scholar
  22. 22.
    X.Y. Ling, I.Y. Phang, D.N. Reinhoudt, G.J. Vancso, J.H. Huskens, Free-standing porous supramolecular assemblies of nanoparticles made using a double-templating strategy. Faraday Discuss. 143, 117 (2009)CrossRefGoogle Scholar
  23. 23.
    K. Mitamura, T. Imae, N. Saito, O. Takai, Fabrication and self-assembly of hydrophobic gold nanorods. J. Phys. Chem. B 111, 8891 (2007)CrossRefGoogle Scholar
  24. 24.
    I. Koltover, S. Sahu, N. Davis, Genetic engineering of the nanoscale structure in polyelectrolyte-lipid self-assembled systems. Angew. Chem. 43, 4034 (2004)Google Scholar
  25. 25.
    K. Niece, J.D. Hartgerink, J.J.J.M. Donners, S.I. Stupp, Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J. Am. Chem. Soc. 125, 7146 (2003)CrossRefGoogle Scholar
  26. 26.
    E. Gazit, R. Nussinov (eds.), Methods in Molecular Biology, Vol. 474: Nanostructure Design: Methods and Protocols (Humana, Totowa, NJ, 2008)Google Scholar
  27. 27.
    J.E. Padilla, C. Colovos, T.O. Yeates, Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc. Natl. Acad. Sci. 98, 2217 (2001)CrossRefGoogle Scholar
  28. 28.
    R.A. Mcmillan, C.D. Paavola, J. Howard, S.L. Chan, N.J. Zaluzec, J.D. Trent, Ordered nanoparticle arrays formed on engineered chaperonin protein template. Nat. Mater. 1, 247 (2002)Google Scholar
  29. 29.
    R. Bhattacharya, C.R. Patra, S.F. Wang, L.C. Lu, M.J. Yaszemski, D. Mukhopadhyay, P. Mukherjee, Assembly of gold nanoparticles in a rod-like fashion using proteins as templates. Adv. Funct. Mater. 16, 395 (2006)CrossRefGoogle Scholar
  30. 30.
    M.S. Wong, J.N. Cha, K. Choi, T.J. Deming, G.D. Stucky, Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Lett. 2, 583 (2002)CrossRefGoogle Scholar
  31. 31.
    M.S. Ayyagari, R. Pande, S. Kamtekar, H. Gao, K.A. Marx, J. Kumar, S.K. Tripathy, J.A. Akkara, D.L. Kaplan, Molecular assembly of proteins and conjugated polymers: toward development of biosensors. Biotechnol. Bioeng. 45, 116 (1995)CrossRefGoogle Scholar
  32. 32.
    M. Li, K.K.W. Wong, S. Mann, Organization of inorganic nanoparticles using biotin-strepavidin connectors. Chem. Mater. 11, 23 (1999)CrossRefGoogle Scholar
  33. 33.
    M. Li, E. Dujardin, S. Mann, Programmed assembly of multi-layered protein/nanoparticle-carbon nanotube conjugates. Chem. Commun. 4952 (2005)Google Scholar
  34. 34.
    K.K. Caswell, J.N. Wilson, U.H.F. Bunz, C.J. Murphy, Preferential end-to-end assembly of gold nanorods by biotin-strepavidin connectors. J. Am. Chem. Soc. 125, 13914 (2003)CrossRefGoogle Scholar
  35. 35.
    C.A. Mirkin, Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg. Chem. 39, 2258 (2000)CrossRefGoogle Scholar
  36. 36.
    F.C. Simmel, Three-dimensional nanoconstruction with DNA. Angew. Chem. 47, 5884 (2008)Google Scholar
  37. 37.
    C.Q. Yi, D.D. Liu, M.S. Yang, Building nanoscale architectures by directed synthesis and self-assembly. Curr. Nanosci. 5, 75 (2009)CrossRefGoogle Scholar
  38. 38.
    R.A. Kiehl, DNA-directed assembly of nanocomponents for nanoelectronics, nanophotonics, and nanosensing. Proceedings of SPIE 2007 (SPIE, Bellingham, WA, 2007), p. 67680ZGoogle Scholar
  39. 39.
    R.P. Goodman, M. Heilemann, S. Doose, C.M. Erben, A.N. Kapanidis, A.J. Turberfield, Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol. 3, 93 (2008)CrossRefGoogle Scholar
  40. 40.
    J. Chen, N.C. Seeman, Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631 (1991)Google Scholar
  41. 41.
    J. Zimmermann, M.P.J. Cebulla, S. Mönninghoff, G. von Kiedrowski, Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C3 h linkers. Angew. Chem. 47, 3626 (2008)Google Scholar
  42. 42.
    W.M. Shih, J.D. Quispe, G.F. Joyce, A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618 (2004)CrossRefGoogle Scholar
  43. 43.
    R.P. Goodman, I.A.T. Schaap, C.F. Tardin, C.M. Erben, R.M. Berry, C.F. Schmidt, A.J. Turberfield, Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661 (2005)CrossRefGoogle Scholar
  44. 44.
    C.M. Erben, R.P. Goodman, A.J. Turberfield, Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. 45, 7414 (2006)Google Scholar
  45. 45.
    Y. He, T. Ye, M. Su, C. Zhang. A.E. Ribbe, W. Jiang, C. Mao, Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198 (2008)CrossRefGoogle Scholar
  46. 46.
    C. Zhang, M. Su, Y. He, X. Zhao, P. Fang, A.E. Ribbe, W. Jiang, C. Mao, Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc. Natl. Acad. Sci. 105, 10665 (2008)CrossRefGoogle Scholar
  47. 47.
    P.W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440, 297 (2006)Google Scholar
  48. 48.
    E.S. Andersen, M. Dong, M.M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M.M. Golas, B. Sander, H. Stark, C.L.P. Oliveira, J.S. Pedersen, V. Birkedal, F. Besenbacher, K.V. Gothelf, J. Kjems, Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73 (2009)CrossRefGoogle Scholar
  49. 49.
    E. Dujardin, S. Mann, Bio-inspired materials chemistry. Adv. Eng. Mater. 4, 461 (2002)CrossRefGoogle Scholar
  50. 50.
    A. Kumar, M. Pattarkine, M. Bhadbhade, A.B. Mandale, K.N. Ganesh, S.S. Datar, C.V. Dharmadhikari, M. Sastry, Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates. Adv. Mater. 13, 341 (2001)Google Scholar
  51. 51.
    C. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607 (1996)CrossRefGoogle Scholar
  52. 52.
    J. Zhang, Y. Liu, Y. Ke, H. Yan, Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 6, 248 (2006)CrossRefGoogle Scholar
  53. 53.
    R.C. Mucic, J.J. Storhoff, C.A. Mirkin, R.L. Letsinger, DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 120, 12674 (1998)CrossRefGoogle Scholar
  54. 54.
    E. Dujardin, L. Hsin, C.R.C. Wang, S. Mann, DNA-driven self-assembly of gold nanorods. Chem. Commun. 1264 (2001)Google Scholar
  55. 55.
    S. Park, A.A. Lazarides, C.A. Mirkin, R.L. Letsinger, Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew. Chem. 40, 2909 (2001)Google Scholar
  56. 56.
    A.D. Bates, B.P. Callen, J.M. Cooper, R. Cosstick, C. Geary, A. Glidle, L. Jaeger, J.L. Pearson, M. Proupín-Pérez, C. Xu, D.R.S. Cumming, Construction and characterization of a gold nanoparticle wire assembled using Mg2+-dependent RNA–RNA interactions. Nano Lett. 6, 445 (2006)CrossRefGoogle Scholar
  57. 57.
    D. Chowdhury, Combination of self-assembly and nanolithography as an effective nanofabrication methodology for device realization. Curr. Sci. 96, 923 (2009)Google Scholar
  58. 58.
    G.M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295, 2418 (2002)CrossRefGoogle Scholar
  59. 59.
    M. Wen, K.E.H. Qi, L. Li, J. Chen, Y. Chen, Q. Wu, T. Zhang, Langmuir-Blodgett self-assembly and electrochemical catalytic property of FePt magnetic nano-monolayer. J. Nanopart. Res. 9, 909 (2007)CrossRefGoogle Scholar
  60. 60.
    F. Kim, S. Kwan, J. Akana, P. Yang, Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 123, 4360 (2001)CrossRefGoogle Scholar
  61. 61.
    Y. Xia, B. Gates, Y. Yin, Y. Lu, Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12, 693 (2000)CrossRefGoogle Scholar
  62. 62.
    R. Micheletto, H. Fukuda, M. Ohtsu, A simple method for the production of a two-dimensional, ordered array of small latex particles. Langmuir 11, 3333 (1995)CrossRefGoogle Scholar
  63. 63.
    C. Petit, A. Taleb, M.P. Pileni, Self-organization of magnetic nanosized cobalt particles. Adv. Mater. 10, 259 (1998)CrossRefGoogle Scholar
  64. 64.
    B.J. Murray, Q. Li, J.T. Newberg, E.J. Menke, J.C. Hemminger, R.M. Penner, Shape-and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids. Nano Lett. 5, 2319 (2005)CrossRefGoogle Scholar
  65. 65.
    I. Sokolov, Y. Kievsky, 3D design of self-assembled nanoporous colloids. Stud. Surf. Sci. Catal. 156, 433 (2005)CrossRefGoogle Scholar
  66. 66.
    Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002)CrossRefGoogle Scholar
  67. 67.
    C.B. Murray, C.R. Kagan, M.G. Bawendi, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335 (1995)CrossRefGoogle Scholar
  68. 68.
    A. Ganguly, T. Ahmad, A.K. Ganguli, Self-assembly of copper succinate nanoparticles to form anisotropic mesostructures. Dalton Trans. 3536 (2009)Google Scholar
  69. 69.
    A. van Blaaderen, R. Ruel, P. Wiltzius, Template-directed colloidal crystallization. Nature 385, 321 (1997)CrossRefGoogle Scholar
  70. 70.
    Y.Y. Wu, G.S. Cheng, K. Katsov, S.W. Sides, J.F. Wang, J. Tang, G.H. Fredrickson, M. Moskovits, G.D. Stucky, Composite mesostructures by nano-confinement. Nat. Mater. 3, 816 (2004)Google Scholar
  71. 71.
    B.A. Grzybowski, C.E. Wilmer, J. Kim, K.P. Browne, K.J.M. Bishop, Self-assembly: from crystals to cells. Soft Matter 5, 1110 (2009)CrossRefGoogle Scholar
  72. 72.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S. B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  73. 73.
    S. Liu, R. Maoz, J. Sagiv, Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality. Nano Lett. 4, 845 (2004)CrossRefGoogle Scholar
  74. 74.
    M. Rycenga, J. M. McLellan, Y. Xia, Controlling the assembly of silver nanocubes through selective functionalization. Adv. Mater. 20, 2416 (2008)CrossRefGoogle Scholar
  75. 75.
    S. Park, J. Lim, S. Chung, C.A. Mirkin, Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303, 348 (2004)CrossRefGoogle Scholar
  76. 76.
    Z. Gu, H. Ye, D.H. Gracias, The bonding of nanowire assemblies using adhesive and solder. J. Miner. Met. Mater. Soc. 57, 60 (2005)CrossRefGoogle Scholar
  77. 77.
    J.C. Love, A.R. Urbach, M.G. Prentiss, G.M. Whitesides, Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions. J. Am. Chem. Soc. 125, 12696 (2003)CrossRefGoogle Scholar
  78. 78.
    J. Tien, T.L. Breen, G.M. Whitesides, Crystallization of millimeter-scale objects with use of capillary forces. J. Am. Chem. Soc. 120, 12670 (1998)CrossRefGoogle Scholar
  79. 79.
    S.R.J. Oliver, N. Bowden, G.M. Whitesides, Self-assembly of hexagonal rod arrays based on capillary forces. J. Colloid Interface Sci. 224, 425 (2000)CrossRefGoogle Scholar
  80. 80.
    T.L. Breen, J. Tien, S.R.J. Oliver, T. Hadzic, G.M. Whitesides, Design and self-assembly of open, regular, 3D mesostructures. Science 284, 948 (1999)CrossRefGoogle Scholar
  81. 81.
    D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides, Forming electrical networks in three dimensions by self-assembly. Science 289, 1170 (2000)CrossRefGoogle Scholar
  82. 82.
    Z. Gu, Y. Chen, D.H. Gracias, Surface tension driven self-assembly of bundles and networks of 200 nm diameter rods using a polymerizable adhesive. Langmuir 20, 11308 (2004)CrossRefGoogle Scholar
  83. 83.
    Z. Gu, H. Ye, D. Smirnova, D.H. Gracias, Reflow and electrical characteristics of nanoscale solder. Small 2, 225 (2006)CrossRefGoogle Scholar
  84. 84.
    T.G. Leong, A. Zarafshar, D.H. Gracias, Three dimensional fabrication at small size scales. Small 6, 792 (2010)CrossRefGoogle Scholar
  85. 85.
    V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato, T.A. Gavrilova, Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Phys. E 6, 828 (2000)CrossRefGoogle Scholar
  86. 86.
    O.G. Schmidt, K. Eberl, Nanotechnology: thin solid films roll up into nanotubes. Nature 410, 168 (2001)CrossRefGoogle Scholar
  87. 87.
    O.G. Schmidt, N. Schmarje, C. Deneke, C. Müller, N.Y. Jin-Phillipp, Three-dimensional nano-objects evolving from a two-dimensional layer technology. Adv. Mater. 13, 756 (2001)CrossRefGoogle Scholar
  88. 88.
    A.V. Prinz, V.Y. Prinz, V.A. Seleznev, Semiconductor micro- and nanoneedles for microinjections and ink-jet printing. Microelectron. Eng. 67–68, 782 (2003)Google Scholar
  89. 89.
    M. Huang, C. Boone, M. Roberts, D.E. Savage, M.G. Lagally, N. Shaji, H. Qin, R. Blick, J.A. Nairn, F. Liu, Nanomechanical architecture of strained bilayer thin films: from design principles to experimental fabrication. Adv. Mater. 17, 2860 (2005)CrossRefGoogle Scholar
  90. 90.
    V.Y. Prinz, Precise, Molecularly thin semiconductor shells: From nanotubes to nanocorrugated quantum systems. Phys. Stat. Sol. B 243, 3333 (2006)CrossRefGoogle Scholar
  91. 91.
    C. Deneke, C. Müller, N.Y. Jin-Phillipp, O.G. Schmidt, Diameter scalability of rolled-up In(Ga)As/GaAs nanotubes. Semicond. Sci. Technol. 17, 1278 (2002)Google Scholar
  92. 92.
    O.G. Schmidt, C. Deneke, Y.M. Manz, C. Müller, Semiconductor tubes, rods and rings of nanometer and micrometer dimension. Phys. E 13, 969 (2002)CrossRefGoogle Scholar
  93. 93.
    M. Ohring, Materials Science of Thin Films (Academic, San Diego, CA, 2002)Google Scholar
  94. 94.
    P.O. Vaccaro, K. Kubota, T. Aida, Strain-driven self-positioning of micromachined structures. Appl. Phys. Lett. 78, 2852 (2001)CrossRefGoogle Scholar
  95. 95.
    Y.C. Tsui, T.W. Clyne, An analytical model for predicting residual stresses in progressively deposited coatings part 1: planar geometry. Thin Solid Films 306, 23 (1997)CrossRefGoogle Scholar
  96. 96.
    J.H. Cho, T. James, D.H. Gracias, Curving nanostructures using extrinsic stress. Adv. Mater. 22, 2320 (2010)CrossRefGoogle Scholar
  97. 97.
    D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2009)Google Scholar
  98. 98.
    W.D. Nix, B.M. Clemens, Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14, 3467 (1999)CrossRefGoogle Scholar
  99. 99.
    S.C. Seel, C.V. Thompson, Tensile stress generation during island coalescence for variable island-substrate contact angle. J. Appl. Phys. 93, 9038 (2003)CrossRefGoogle Scholar
  100. 100.
    B.W. Sheldon, K.H.A. Lau, A. Rajamani, Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films. J. Appl. Phys. 90, 5097 (2001)CrossRefGoogle Scholar
  101. 101.
    F. Spaepen, Interfaces and stresses in thin films. Acta Mater. 48, 31 (2000)CrossRefGoogle Scholar
  102. 102.
    A.N. Magunov, Determining the heat of a surface plasmochemical reaction by scanning calorimetry. Instrum. Exp. Tech. 43, 706 (2000)CrossRefGoogle Scholar
  103. 103.
    W.D. Pilkey, Analysis and Design of Elastic Beams (Wiley, New York, NY, 2002)CrossRefGoogle Scholar
  104. 104.
    S. Yasin, D.G. Hasko, H. Ahmed, Fabrication of < nm width lines in poly(methylmethacrylate) resist using a water:isopropyl alcohol developer and ultrasonically-assisted development. Appl. Phys. Lett. 78, 2760 (2001)CrossRefGoogle Scholar
  105. 105.
    K. Yamazaki, H. Namatsu, 5-nm-order electron-beam lithography for nanodevice fabrication. Jpn. J. Appl. Phys. 43, 3767 (2004)CrossRefGoogle Scholar
  106. 106.
    E.J. Smith, Z. Liu, Y. Mei, O.G. Schmidt, Combined surface plasmon and classical waveguiding through metamaterial fiber design. Nano Lett. 10, 1 (2010)CrossRefGoogle Scholar
  107. 107.
    K. Miura, Method of packaging and deployment of large membranes in space. Proceedings of the 31st Congress of the International Astronautical Federation (American Institute of Aeronautics and Astronautics, New York, NY, 1980), p. 1Google Scholar
  108. 108.
    I. Stewart, Mathematics: some assembly needed. Nature 448, 419 (2007)CrossRefGoogle Scholar
  109. 109.
    H.J. In, S. Kumar, Y. Shao-Horn, G. Barbastathis, Origami fabrication of nanostructured, three-dimensional devices: electrochemical capacitors with carbon electrodes. Appl. Phys. Lett. 88, 083104 (2006)CrossRefGoogle Scholar
  110. 110.
    S.T. Brittain, O.J.A. Schueller, H.K. Wu, S. Whitesides, G.M. Whitesides, Microorigami: fabrication of small, three-dimensional, metallic structures. J. Phys. Chem. B 105, 347 (2001)CrossRefGoogle Scholar
  111. 111.
    H. Okuzaki, T. Saido, H. Suzuki, Y. Hara, H. Yan, A biomorphic origami actuator fabricated by folding a conducting paper. J. Phys. Conf. Ser. 127, 012001 (2008)CrossRefGoogle Scholar
  112. 112.
    R.R.A. Syms, E.M. Yeatman, Self-assembly of fully three-dimensional microstructures using rotation by surface tension forces. Electron. Lett. 29, 662 (1993)CrossRefGoogle Scholar
  113. 113.
    R.R.A. Syms, E.M. Yeatman, V.M. Bright, G.M. Whitesides, Surface tension-powered self-assembly of microstructures – the state-of-the-art. J. Microelectromech. Syst. 12, 387 (2003)CrossRefGoogle Scholar
  114. 114.
    W.J. Arora, A.J. Nichol, H.I. Smith, G. Barbastathis, Membrane folding to achieve three-dimensional nanostructures: nanopatterned silicon nitride folded with stressed chromium hinges. Appl. Phys. Lett. 88, 053108 (2006)CrossRefGoogle Scholar
  115. 115.
    B. Gimi, T.G. Leong, Z. Gu, M. Yang, D. Artemov, Z.M. Bhujwalla, D.H. Gracias, Self-assembled three dimensional radio frequency (RF) shielded containers for cell encapsulation. Biomed. Microdevices 7, 341 (2005)CrossRefGoogle Scholar
  116. 116.
    T.G. Leong, P.A. Lester, T.L. Koh, E.K. Call, D.H. Gracias, Surface tension driven self-folding polyhedra. Langmuir 23, 8747 (2007)CrossRefGoogle Scholar
  117. 117.
    J.H. Cho, S. Hu, D.H. Gracias, Self-assembly of orthogonal 3-axis sensors. Appl. Phys. Lett. 93, 043505 (2008)CrossRefGoogle Scholar
  118. 118.
    A. Azam, T.G. Leong, A.M. Zarafshar, D.H. Gracias, Compactness determines the success of cube and octahedron self-assembly. PLoS One 4 (2009) e4451CrossRefGoogle Scholar
  119. 119.
    D.J. Filipiak, A. Azam, T.G. Leong, D.H. Gracias, Hierarchical self-assembly of complex polyhedral microcontainers. J. Micromech. Microeng. 19, 075012 (2009)CrossRefGoogle Scholar
  120. 120.
    N. Bassik, G.M. Stern, D.H. Gracias, Microassembly based on hands free origami with bidirectional curvature. Appl. Phys. Lett. 95, 091901 (2009)CrossRefGoogle Scholar
  121. 121.
    J.H. Cho, D.H. Gracias, Self-assembly of lithographically patterned nanoparticles. Nano Lett. 9, 4049 (2009)CrossRefGoogle Scholar
  122. 122.
    J.S. Randhawa, T.G. Leong, N. Bassik, B.R. Benson, M.T. Jochmans, D.H. Gracias, Pick-and-place using chemically actuated microgrippers. J. Am. Chem. Soc. 130, 7238 (2008)CrossRefGoogle Scholar
  123. 123.
    T.G. Leong, C.L. Randall, B.R. Benson, N. Bassik, G.M. Stern, D.H. Gracias, Tetherless thermobiochemically actuated microgrippers. Proc. Natl. Acad. Sci. 106, 703 (2009)CrossRefGoogle Scholar
  124. 124.
    J.S. Randhawa, M.D. Keung, P. Tyagi, D.H. Gracias, Reversible actuation of microstructures by surface chemical modification of thin film bilayers. Adv. Mater. 22, 407 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC outside the People's Republic of China, Weilie Zhou and Zhong Lin Wang in the People's Republic of China 2011

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations