Energy dispersive X-ray spectroscopy analysis on rock samples subjected to piezonuclear tests

  • A. Carpinteri
  • A. Chiodoni
  • A. Manuello
  • R. Sandrone
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


In the present paper, Energy Dispersive X-ray Spectroscopy (EDS) was performed on different samples of external or fracture surfaces coming from specimens used in piezonuclear tests [1,2]. For each sample, different measurements of the same crystalline phases (phengite and biotite) were performed in order to get averaged information of the chemical composition and to detect possible piezonuclear transmutations from iron to lighter elements. The results of EDS analyses show that, in the fracture surface samples, a considerable reduction in the iron content (~25%) seems to be counterbalanced by an increase in Al, Si, and Mg concentrations.


Fracture Surface Granitic Gneiss Recycle Aggregate Neutron Emission Polished Thin Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carpinteri, A., Cardone, F., Lacidogna G. (2009) Piezonuclear neutrons from brittle fracture: Early results of mechanical compression tests. Strain. 45, 332–339.CrossRefGoogle Scholar
  2. 2.
    Cardone, F., Carpinteri, A., Lacidogna, G. (2009) Piezonuclear neutrons from fracturing of inert solids. Physics Letters A. 373, 4158–4163.CrossRefGoogle Scholar
  3. 3.
    Arata, Y., Zhang, Y. (1995) Achievement of solid-state plasma fusion (“cold-fusion”). Proc. Japan. Acad. 71, Ser. B, 304–309.Google Scholar
  4. 4.
    Arata, Y., Fujita, H., Zhang, Y-C. (2002) Intense deuterium nuclear fusion of pycnodeuterium-lumps coagulated locally within highly deuterated atom clusters. Proc. Japan. Acad.78, Ser. B, 201–204.Google Scholar
  5. 5.
    Taleyarkhan, R. P., West, C. D., Cho, J. S., Lahey Jr., R. T., Nigmatulin, R. I., Block, R. C. (2002) Evidence for Nuclear Emissions During Acoustic Cavitation. Science. 295, 1978–1293.CrossRefGoogle Scholar
  6. 6.
    Cardone, F., Cherubini, G., Petrucci, A. (2009) Piezonuclear neutrons. Phys. Lett. A. 373(8–9), 862–866. See also: F. Cardone et al.
  7. 7.
    Cardone, F., Mignani, R., (2007) Deformed Spacetime, Springer, Dordrecht, Chapters 16–17.Google Scholar
  8. 8.
    Vola, G., Marchi, M., (2009) Mineralogical and petrographic quantitative analysis of a recycled aggregate from quarry wastes. The Luserna stone case-study. Proc of the 12th Euroseminar on Microscopy Applied to Building Materials, 15–19 September 2009, Dortmund, Germany.Google Scholar
  9. 9.
    Sandrone R., Cadoppi P., Sacchi R., Vialon P. (1993) The Dora-Maira Massif. In: Von Raumer J.F., Neubauer F. (Eds.). Pre-Mesozoic geology in the Alps. Springer, Berlin, 317–325.CrossRefGoogle Scholar
  10. 10.
    Sandrone, R., Borghi, A. (1992) Zoned garnets in the northern Dora-Maria Massif and their contribution to a reconstruction of the regional metamorphic evolution. European Journal of Minerals. 4,465-474.Google Scholar
  11. 11.
    Compagnoni R., Crisci G.M., Sandrone R. (1982–83) Caratterizzazione chimica e petrografica degli “gneiss di Luserna” (Massiccio cristallino Dora-Maira, Alpi Occidentali). Rend. Soc. It. Min. Petr. 38, 498.Google Scholar
  12. 12.
    Sandrone R. (2001) La Pietra di Luserna nella letteratura tecnico-scientifica. Sem. Int. Le Pietre Ornamentali della Montagna Europea, Luserna San Giovanni-Torre Pellice (TO), 10–12 giugno 2001, 333–339.Google Scholar
  13. 13.
    Carpinteri, A. (1989) Cusp catastrophe interpretation of fracture instability. Journal of the Mechanics and Physics of Solids. 37, 567–582.zbMATHCrossRefGoogle Scholar
  14. 14.
    Carpinteri, A. (1990) A catastrophe theory approach to fracture mechanics. International Journal of Fracture. 44, 57– 69.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Carpinteri, A., Corrado, M. (2009) An extended (fractal) overlapping crack model to describe crushing sizescale effects in compression. Eng. Failure Analysis. 16, 2530–2540.CrossRefGoogle Scholar
  16. 16.
    Cardone, F., Mignani, R., Petrucci, A., private communication.Google Scholar

Copyright information

© Springer Science+Businees Media, LLC 2011

Authors and Affiliations

  • A. Carpinteri
    • 1
  • A. Chiodoni
    • 2
  • A. Manuello
    • 1
  • R. Sandrone
    • 3
  1. 1.Department of Structural Engineering & GeotechnicsPolitecnico di TorinoTorinoItaly
  2. 2.Italian Institut of Tecnology (IIT) Center for Space Human RoboticsPolitecnico di TorinoTorinoItaly
  3. 3.Department of Land, Environment and Geo-EngineeringPolitecnico di TorinoTorinoItaly

Personalised recommendations