Experimental and Applied Mechanics, Volume 6 pp 307-310 | Cite as
Tracking nanoparticles optically to study their interaction with cells
Abstract
Nanoparticles are by definition too small to be visible in an optical microscope and devices such as scanning electron microscopes must be used to resolve them. However electron beams quickly lead to cell death and so it is difficult to study the interaction of nanoparticles with living cells in order to establish whether such interactions could be damaging to the cell. A simple modification to a conventional inverted optical microscope is proposed here which renders the location of nanoparticles readily apparent and permits tracking of them in threedimensions. Particles in the range 100nm to 500nm have been tracked with a temporal resolution of 200ms. The technique, although motivated by the desire to study the interaction of nanoparticles with cells, has a wide range of potential applications in the fields of food processing, pharmaceuticals and nano-biotechnology.
Keywords
Particle Image Velocimetry Experimental Mechanics Diffraction Effect Piezo Actuator 500nm ParticlePreview
Unable to display preview. Download preview PDF.
References
- 1.Xu, C.S., Cang, H., Montiel, D., Yang, H., Rapid & quantitative sizing of nanoparticles using three-dimensional single particle tracking, J Phys. Chem., 111:32–35, 2007Google Scholar
- 2.Louit, G., Asahi, T., Tanaka, G., Uwada, T., Masuhara, H., Spectral and 3-Dimensional tracking of single gold nanoparticles in living cells studied by Rayleigh light scattering microscopy, J Phys. Chem. C.,113:11766–11772, 2009.Google Scholar
- 3.Lasne, D., Blab, G.A., Berciaud, S., Heine, M., Groc, L., Choquet, D., Cognet, L., Lounis, B., Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells, Biophysical Journal, 91:4598–4604, 2006.CrossRefGoogle Scholar
- 4.Ovryn, B., Three-dimensional forward scattering particle image velocimetry applied to a microscope field-ofview, Experiments in Fluids [Suppl.], S175-184, 2000.Google Scholar
- 5.Guerrero-Viramontes, J.A., Moreno-Hernandez, Mendoza-Santoyo, F., Funes-Gallanzi, M., 3D particle positioning from CCD images using the generalised Lorenz-Mie and Huygens-Fresnel theories, Meas.Sci. Technol., 17:2328–2334, 2006.Google Scholar
- 6.Toprak, E., Balci, H., Blehm, B.H., Selvin, P.R., ‘Three dimensional particle tracking via bifocal imaging’, Nano Letters, 7(7):2043–2045, 2007.CrossRefGoogle Scholar
- 7.Patterson, E.A., Whelan, M.P., Tracking nanoparticles in an optical microscope using caustics, Nanotechnology, 19:105502, 2008.CrossRefGoogle Scholar
- 8.Patterson, E.A., Whelan, M.P., Optical signatures of small nanoparticles in a conventional microscope. Small, 4(10):1703–1706, 2008.CrossRefGoogle Scholar