Angiographic Image Analysis

  • Olena Tankyevych
  • Hugues Talbot
  • Nicolas Passat
  • Mariano Musacchio
  • Michel Lagneau
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

In the last 20 years, progress in 3D medical imaging (such as MRI and CT) has led to the development of modalities devoted to visualise vascular structures. These angiographic images progressively proved their usefulness in the context of various clinical applications. However, such data are generally complex to analyse due to their size and low amount of relevant (vascular) information versus noise, artifacts and other anatomical structures. Therefore, there is an ongoing necessity to provide tools facilitating image visualisation and analysis. In this chapter, we first focus on vascular image analysis. In particular, we present a survey on both standard and recent vessel segmentation methodologies. We then discuss the existing ways to model anatomical knowledge via the computation of vascular atlases. Such atlases can notably be embedded in computer-aided radiology tools.

References

  1. 1.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)CrossRefGoogle Scholar
  2. 2.
    Agam, G., Armato, S. III, Wu, C.: Vessel tree reconstruction in thoracic CT scans with application to nodule detection. IEEE Trans. Med. Imaging 24(4), 486–499 (2005)CrossRefGoogle Scholar
  3. 3.
    Antiga, L., Steinman, D.A.: Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23(6), 704–713 (2004)CrossRefGoogle Scholar
  4. 4.
    Avants, B.B., Williams, J.P.: An adaptive minimal path generation technique for vessel tracking in CTA/CE-MRA volume images. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000. Lecture Notes in Computer Science, vol. 1935, pp. 707–716. Springer, Berlin (2000)Google Scholar
  5. 5.
    Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2), 61–75 (2002)CrossRefGoogle Scholar
  6. 6.
    Aylward, S.R., Jomier, J., Weeks, S., Bullitt, E.: Registration and analysis of vascular images. Int. J. Comput. Vis. 55(2–3), 123–138 (2003)CrossRefGoogle Scholar
  7. 7.
    Benmansour, F., Cohen, L.D.: A new interactive method for coronary arteries segmentation based on tubular anisotropy. In: International Symposium on Biomedical Imaging – ISBI 2009, pp. 41–44. IEEE (2009)Google Scholar
  8. 8.
    Bigun, J., Bigun, T., Nilsson, K.: Recognition by symmetry derivatives and the generalized structure tensor. IEEE Trans. Pattern Anal. Mach. Intell. 26(12), 1590–1605 (2004)CrossRefGoogle Scholar
  9. 9.
    Boldak, C., Rolland, Y., Toumoulin, C.: An improved model-based vessel tracking algorithm with application to computed tomography angiography. Biocybern. Biomed. Eng. 23(1), 41–64 (2003)Google Scholar
  10. 10.
    Bouraoui, B., Ronse, C., Baruthio, J., Passat, N., Germain, P.: 3D segmentation of coronary arteries based on advanced Mathematical Morphology techniques. Comput. Med. Imaging Graph. 34(5), 377–387 (2010)CrossRefGoogle Scholar
  11. 11.
    Caldairou, C., Passat, N., Naegel, B.: Attribute-filtering and knowledge extraction for vessel segmentation. In: International Symposium on Visual Computing – ISVC 2010, Lecture Notes in Computer Science, vol. 6453, pp. 13–22. Springer, Berlin (2010)Google Scholar
  12. 12.
    Carrillo, J.F., Hernández Hoyos, M., Davila-Serrano, E.E., Orkisz, M.: Recursive tracking of vascular tree axes in 3D medical images. Int. J. Comput. Assist. Radiol. Surg. 1(6), 331–339 (2007)CrossRefGoogle Scholar
  13. 13.
    Carrillo, J.F., Orkisz, M., Hernández Hoyos, M.: Extraction of 3D vascular tree skeletons based on the analysis of connected components evolution. In: Computer Analysis of Images and Patterns – CAIP 2005, Lecture Notes in Computer Science, vol. 3691, pp. 604–611. Springer, Berlin (2005)Google Scholar
  14. 14.
    Chalopin, C., Finet, G., Magnin, I.E.: Modeling the 3D coronary tree for labeling purposes. Med. Image Anal. 5(4), 301–315 (2001)CrossRefGoogle Scholar
  15. 15.
    Chen, J., Amini, A.A.: Quantifying 3-D vascular structures in MRA images using hybrid PDE and geometric deformable models. IEEE Trans. Med. Imaging 23(10), 1251–1262 (2004)CrossRefGoogle Scholar
  16. 16.
    Chillet, D., Jomier, J., Cool, D., Aylward, S.: Vascular atlas formation using a vessel-to-image affine registration method. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2003. Lecture Notes in Computer Science, vol. 2878, pp. 335–342. Springer, Berlin (2003)Google Scholar
  17. 17.
    Chung, A.C.S., Noble, J.A., Summers, P.: Fusing speed and phase information for vascular segmentation of phase contrast MR angiograms. Med. Image Anal. 6(2), 109–128 (2002)CrossRefGoogle Scholar
  18. 18.
    Chung, A.C.S., Noble, J.A., Summers, P.E.: Vascular segmentation of phase contrast magnetic resonance angiograms based on statistical mixture modeling and local phase coherence. IEEE Trans. Med. Imaging 23(12), 1490–1507 (2004)CrossRefGoogle Scholar
  19. 19.
    Chung, A.C.S., Noble, J.A., Summers, P.E., Brady, M.: 3D vascular segmentation using MRA statistics and velocity field information in PC-MRA. In: Information Processing in Medical Imaging – IPMI 2001. Lecture Notes in Computer Science, vol. 2082, pp. 461–467. Springer, Berlin (2001)Google Scholar
  20. 20.
    Cool, D., Chillet, D., Guyon, J.P., Foskey, M., Aylward, S.: Tissue-based affine registration of brain images to form a vascular density atlas. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2003. Lecture Notes in Computer Science, vol. 2879, pp. 9–15. Springer, Berlin (2003)Google Scholar
  21. 21.
    Couinaud, C.: Le foie, études anatomiques et chirurgicales. Masson, Paris (1957)Google Scholar
  22. 22.
    Couprie, M., Coeurjolly, D., Zrour, R.: Discrete bisector function and Euclidean skeleton in 2D and 3D. Image Vis. Comput. 25(10), 1519–1698 (2007)CrossRefGoogle Scholar
  23. 23.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977)Google Scholar
  24. 24.
    Descoteaux, M., Collins, D.L., Siddiqi, K.: A geometric flow for segmenting vasculature in proton-density weighted MRI. Med. Image Anal. 12(4), 497–513 (2008)CrossRefGoogle Scholar
  25. 25.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Dodge, J.T. Jr., Brown, B.G., Bolson, E.L., Dodge, H.T.: Intrathoracic spatial location of specified coronary segments on the normal human heart. Circulation 78(5), 1167–1180 (1988)CrossRefGoogle Scholar
  27. 27.
    Dokládal, P., Lohou, C., Perroton, L., Bertrand, G.: Liver blood vessels extraction by a 3-D topological approach. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 1999. Lecture Notes in Computer Science, vol. 1679, pp. 98–105. Springer, Berlin (1999)Google Scholar
  28. 28.
    El-Baz, A., Farag, A.A., Gimel’farb, G.L., El-Ghar, M.A., Eldiasty, T.: A new adaptive probabilistic model of blood vessels for segmenting MRA images. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. Lecture Notes in Computer Science, vol. 4191, pp. 799–806. Springer, Berlin (2006)Google Scholar
  29. 29.
    El-Baz, A., Farag, A.A., Gimel’farb, G.L., Hushek, S.G.: Automatic cerebrovascular segmentation by accurate probabilistic modeling of TOF-MRA images. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005. Lecture Notes in Computer Science, vol. 3749, pp. 34–42. Springer, Berlin (2005)Google Scholar
  30. 30.
    Ezquerra, N., Capell, S., Klein, L., Duijves, P.: Model-guided labeling of coronary structure. IEEE Trans. Med. Imaging 17(3), 429–441 (1998)CrossRefGoogle Scholar
  31. 31.
    Flasque, N., Desvignes, M., Constans, J.M., Revenu, M.: Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Med. Image Anal. 5(3), 173–183 (2001)CrossRefGoogle Scholar
  32. 32.
    Florin, C., Paragios, N., Williams, J.: Particle filters, a quasi-Monte-Carlo-solution for segmentation of coronaries. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005. Lecture Notes in Computer Science, vol. 3749, pp. 246–253. Springer, Berlin (2005)Google Scholar
  33. 33.
    Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., van Walsum, T., Viergever, M.A.: Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10), 946–956 (1999)CrossRefGoogle Scholar
  34. 34.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 1998. Lecture Notes in Computer Science, vol. 1496, pp. 130–137. Springer, Berlin (1998)Google Scholar
  35. 35.
    Friman, O., Hindennach, M., Kühnel, C., Peitgen, H.O.: Multiple hypothesis template tracking of small 3D vessel structures. Med. Image Anal. 14(2), 160–171 (2009)CrossRefGoogle Scholar
  36. 36.
    Garreau, M., Coatrieux, J.L., Collorec, R., Chardenon, C.: A knowledge-based approach for 3-D reconstruction and labeling of vascular networks from biplane angiographic projections. IEEE Trans. Med. Imaging 10(2), 122–131 (1991)CrossRefGoogle Scholar
  37. 37.
    Gerig, G., Koller, T., Székely, G., Brechbühler, C., Kübler, O.: Symbolic description of 3-D structures applied to cerebral vessel tree obtained from MR angiography volume data. In: Information Processing in Medical Imaging – IPMI 1993. Lecture Notes in Computer Science, vol. 687, pp. 94–111. Springer, Berlin (1993)Google Scholar
  38. 38.
    Graffigne, C., Heitz, F., Pérez, P., Prêteux, F., Sigelle, M., Zerubia, J.: Hierarchical Markov random field models applied to image analysis: A review. In: Neural Morphological and Stochastic Methods in Image and Signal Processing, 1995, SPIE Proceedings, vol. 2568, pp. 2–17. SPIE (1995)Google Scholar
  39. 39.
    Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: A convergence study. Comput. Vis. Image Underst. 77(2), 192–210 (2000)CrossRefGoogle Scholar
  40. 40.
    Hall, P.: On the addition and comparison of graphs labeled with stochastic variables: Learnable anatomical catalogs. J. Comb. Optim. 5(1), 43–58 (2004)CrossRefGoogle Scholar
  41. 41.
    Hall, P., Ngan, M., Andreae, P.: Reconstruction of vascular networks using three-dimensional models. IEEE Trans. Med. Imaging 16(6), 919–930 (1997)CrossRefGoogle Scholar
  42. 42.
    Haris, K., Efstratiadis, S.N., Maglaveras, M., Papas, C., Gourassas, J., Louridas, G.: Model-based morphological segmentation and labeling of coronary angiograms. IEEE Trans. Med. Imaging 18(10), 1003–1015 (1999)CrossRefGoogle Scholar
  43. 43.
    Heijmans, H., Buckley, M., Talbot, H.: Path openings and closings. J. Math. Imaging Vis. 22, 107–119 (2005)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Hendriks, C.L.L.: Constrained and dimensionality-independent path openings. IEEE Trans. Image Process. 19(6), 1587–1595 (2010)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Hernandez, M., Frangi, A.F.: Non-parametric geodesic active regions: Method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA. Med. Image Anal. 11(3), 224–241 (2007)CrossRefGoogle Scholar
  46. 46.
    Hernandez, M., Frangi, A.F., Sapiro, G.: Three-dimensional segmentation of brain aneurysms in CTA using non-parametric region-based information and implicit deformable models: Method and evaluation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2003. Lecture Notes in Computer Science, vol. 2879, pp. 594–602. Springer, Berlin (2003)Google Scholar
  47. 47.
    Hernandez Hoyos, M., Orłowski, P., Piatkowska-Janko, E., Bogorodzki, P., Orkisz, M.: Vascular centerline extraction in 3D MR angiograms for phase contrast MRI blood flow measurement. Int. J. Comput. Assist. Radiol. Surg. 1(1), 51–61 (2006)CrossRefGoogle Scholar
  48. 48.
    Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imaging 27(1), 111–128 (2008)CrossRefGoogle Scholar
  49. 49.
    Jomier, J., Aylward, S.R.: Rigid and deformable vasculature-to-image registration: A hierarchical approach. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. Lecture Notes in Computer Science, vol. 3216, pp. 829–836. Springer, Berlin (2004)Google Scholar
  50. 50.
    Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23(Supplement 1), S151–S160 (2004)Google Scholar
  51. 51.
    Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81–121 (2004)CrossRefGoogle Scholar
  52. 52.
    Kobashi, S., Kamiura, N., Hata, Y., Miyawaki, F.: Volume-quantization-based neural network approach to 3D MR angiography image segmentation. Image Vis. Comput. 19(4), 185–193 (2001)CrossRefGoogle Scholar
  53. 53.
    Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80(2), 130–171 (2000)MATHCrossRefGoogle Scholar
  54. 54.
    Law, M.W.K. sand Chung, A.C.S.: Weighted local variance-based edge detection and its application to vascular segmentation in magnetic resonance angiography. IEEE Trans. Med. Imaging 26(9), 1224–1241 (2007)Google Scholar
  55. 55.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: Design and study of flux-based features for 3D vascular tracking. In: International Symposium on Biomedical Imaging – ISBI 2009, pp. 286–289. IEEE (2009)Google Scholar
  56. 56.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)CrossRefGoogle Scholar
  57. 57.
    Li, H., Yezzi, A.J.: Vessels as 4-D curves: Global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE Trans. Med. Imaging 26(9), 1213–1223 (2007)CrossRefGoogle Scholar
  58. 58.
    Lorenz, C., von Berg, J.: A comprehensive shape model of the heart. Med. Image Anal. 10(4), 657–670 (2006)CrossRefGoogle Scholar
  59. 59.
    Lorigo, L.M., Faugeras, O.D., Grimson, W.E.L., Keriven, R., Kikinis, R., Nabavi, A., Westin, C.F.: CURVES: Curve evolution for vessel segmentation. Med. Image Anal. 5(3), 195–206 (2001)CrossRefGoogle Scholar
  60. 60.
    Mahadevan, V., Narasimha-Iyer, H., Roysam, B., Tanenbaum, H.L.: Robust model-based vasculature detection in noisy biomedical images. IEEE Trans. Inform. Technol. Biomed. 8(3), 360–376 (2004)CrossRefGoogle Scholar
  61. 61.
    Manniesing, R., Niessen, W.J.: Local speed functions in level set based vessel segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. Lecture Notes in Computer Science, vol. 3216, pp. 475–482. Springer, Berlin (2004)Google Scholar
  62. 62.
    Manniesing, R., Velthuis, B.K., van Leeuwen, M.S., van der Schaaf, I.C., van Laar, P.J., Niessen, W.J.: Level set based cerebral vasculature segmentation and diameter quantification in CT angiography. Med. Image Anal. 10(2), 200–214 (2006)CrossRefGoogle Scholar
  63. 63.
    Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel axis tracking using topology constrained surface evolution. IEEE Trans. Med. Imaging 26(3), 309–316 (2007)CrossRefGoogle Scholar
  64. 64.
    McInerney, T., Terzopoulos, D.: Medical image segmentation using topologically adaptable surfaces. In: Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery - CVRMed-MRCAS 1997. Lecture Notes in Computer Science, vol. 1205, pp. 23–32. Springer, Berlin (1997)Google Scholar
  65. 65.
    Meijster, A., Wilkinson, H.: A comparison of algorithms for connected set openings and closings. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 484–494 (2002)CrossRefGoogle Scholar
  66. 66.
    Metz, C., Schaap, M., van der Giessen, A., van Walsum, T., Niessen, W.: Semi-automatic coronary artery centerline extraction in computed tomography angiography data. In: International Symposium on Biomedical Imaging – ISBI 2007, pp. 856–859. IEEE (2007)Google Scholar
  67. 67.
    Metz, C., Schaap, M., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Krestin, G., Niessen, W.: Editorial: 3D segmentation in the clinic: A grand challenge II- Coronary artery tracking. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008 – Workshop: Grand Challenge Coronary Artery Tracking (2008). http://hdl.handle.net/10380/1399
  68. 68.
    Naegel, B., Passat, N., Ronse, C.: Grey-level hit-or-miss transforms – Part II: Application to angiographic image processing. Pattern Recognit. 40(2), 648–658 (2007)MATHCrossRefGoogle Scholar
  69. 69.
    Naegel, B., Ronse, C., Soler, L.: Using grey-scale hit-or-miss transform for segmenting the portal network of the liver. In: International Symposium on Mathematical Morphology – ISMM 2005. Computational Imaging and Vision, vol. 30, pp. 429–440. Springer SBM (2005)Google Scholar
  70. 70.
    Naidich, T.P., Brightbill, T.C.: Vascular territories and watersheds: A zonal frequency analysis of the gyral and sulcal extent of cerebral infarcts. Part I: the anatomic template. Neuroradiology 45(8), 536–540 (2003)Google Scholar
  71. 71.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Process. 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  72. 72.
    Najman, L., Talbot, H. (eds.): Mathematical Morphology: From Theory to Applications. Wiley, London (2010)MATHGoogle Scholar
  73. 73.
    Nowinski, W., Thirunavuukarasuu, A., Volkau, I., Marchenko, Y., Aminah, B., Puspitasari, F., Runge, V.: A three-dimensional interactive atlas cerebral arterial variants. NeuroInformatics 7(4), 255–264 (2009)CrossRefGoogle Scholar
  74. 74.
    Nowinski, W., Volkau, I., Marchenko, Y., Thirunavuukarasuu, A., Ng, T., Runge, V.: A 3D model of human cerebrovasculature derived from 3T magnetic resonance angiography. NeuroInformatics 7(1), 23–36 (2009)CrossRefGoogle Scholar
  75. 75.
    Olabarriaga, S.D., Breeuwer, M., Niessen, W.J.: Minimum cost path algorithm for coronary artery central axis tracking in CT images. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2003. Lecture Notes in Computer Science, vol. 2879, pp. 687–694. Springer, Berlin (2003)Google Scholar
  76. 76.
    Passat, N., Ronse, C., Baruthio, J., Armspach, J.P., Bosc, M., Foucher, J.: Using multimodal MR data for segmentation and topology recovery of the cerebral superficial venous tree. In: International Symposium on Visual Computing – ISVC 2005. Lecture Notes in Computer Science, vol. 3804, pp. 60–67. Springer, Berlin (2005)Google Scholar
  77. 77.
    Passat, N., Ronse, C., Baruthio, J., Armspach, J.P., Maillot, C.: Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation. Med. Image Anal. 10(2), 259–274 (2006)CrossRefGoogle Scholar
  78. 78.
    Passat, N., Ronse, C., Baruthio, J., Armspach, J.P., Maillot, C., Jahn, C.: Region-growing segmentation of brain vessels: An atlas-based automatic approach. J. Magn. Reson. Imaging 21(6), 715–725 (2005)CrossRefGoogle Scholar
  79. 79.
    Qian, X., Brennan, M.P., Dione, D.P., Dobrucki, W.L., Jackowski, M.P., Breuer, C.K., Sinusas, A.J., Papademetris, X.: A non-parametric vessel detection method for complex vascular structures. Med. Image Anal. 13(1), 49–61 (2009)CrossRefGoogle Scholar
  80. 80.
    Sabry Hassouna, M., Farag, A.A., Hushek, S., Moriarty, T.: Cerebrovascular segmentation from TOF using stochastic models. Med. Image Anal. 10(1), 2–18 (2006)CrossRefGoogle Scholar
  81. 81.
    Salamon, G., Huang, Y.P.: A Radiological Anatomy of the Brain. Springer, Berlin (1976)Google Scholar
  82. 82.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. IEEE Trans. Image Process. 9(4), 561–576 (2000)CrossRefGoogle Scholar
  83. 83.
    Salembier, P., Serra, J.: Flat zone filtering, connected operators and filters by reconstruction. IEEE Trans. Image Process. 3(8), 1153–1160 (1995)CrossRefGoogle Scholar
  84. 84.
    Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery – CVRMed-MRCAS 1997. Lecture Notes in Computer Science, vol. 1205, pp. 213–222. Springer, Berlin (1997)Google Scholar
  85. 85.
    Schaap, M., Manniesing, R., Smal, I., van Walsum, T., van der Lugt, A., Niessen, W.: Bayesian tracking of tubular structures and its application to carotid arteries in CTA. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007. Lecture Notes in Computer Science, vol. 4792, pp. 562–570. Springer, Berlin (2007)Google Scholar
  86. 86.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic, London, UK (1982)MATHGoogle Scholar
  87. 87.
    Serra, J. (ed.): Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Academic, London, UK (1988)Google Scholar
  88. 88.
    Shahzad, R., Schaap, M., van Walsum, T., Klien, S., Weustink, A.C., van Vliet, L.J., Niessen, W.J.: A patient-specific coronary density estimate. In: International Symposium on Biomedical Imaging – ISBI 2010, pp. 9–12. IEEE (2010)Google Scholar
  89. 89.
    Soille, P.: Morphological Image Analysis. Springer, Heidelberg (2003)MATHGoogle Scholar
  90. 90.
    Soille, P., Talbot, H.: Directional morphological filtering. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1313–1329 (2001)CrossRefGoogle Scholar
  91. 91.
    Suh, J.W., Scheinost, D., Qian, X., Sinusas, A.J., Breuer, C.K., Papademetris, X.: Serial non rigid vascular registration using weighted normalized mutual information. In: International Symposium on Biomedical Imaging – ISBI 2010, pp. 25–28. IEEE (2010)Google Scholar
  92. 92.
    Sun, K.Q., Sang, N.: Morphological enhancement of vascular angiogram with multiscale detected by Gabor filters. Electron. Lett. 44(2), 86–87 (2008)CrossRefGoogle Scholar
  93. 93.
    Suri, J.S., Liu, K., Reden, L., Laxminarayan, S.: A review on MR vascular image processing algorithms: Acquisition and prefiltering: Part I. IEEE Trans. Inform. Technol. Biomed. 6(4), 324–337 (2002)CrossRefGoogle Scholar
  94. 94.
    Suri, J.S., Liu, K., Reden, L., Laxminarayan, S.: A review on MR vascular image processing: Skeleton versus nonskeleton approaches: Part II. IEEE Trans. Inform. Technol. Biomed. 6(4), 338–350 (2002)CrossRefGoogle Scholar
  95. 95.
    Talbot, H., Appleton, B.: Efficient complete and incomplete paths openings and closings. Image Vis. Comput. 25(4), 416–425 (2007)CrossRefGoogle Scholar
  96. 96.
    Tankyevych, O.: Filtering of thin objects, applications to vascular image analysis. Ph.D. thesis, University Paris-Est (2010)Google Scholar
  97. 97.
    Tatu, L., Moulin, T., Bogousslavsky, J., Duvernoy, H.: Arterial territories of the human brain: Brainstem and cerebellum. Neurology 47(5), 1125–1135 (1996)Google Scholar
  98. 98.
    Tatu, L., Moulin, T., Bogousslavsky, J., Duvernoy, H.: Arterial territories of the human brain: Cerebral hemispheres. Neurology 50(6), 1699–1708 (1998)Google Scholar
  99. 99.
    Thompson, P.M., Toga, A.W.: A framework for computational anatomy. Comput. Vis. Sci. 5(1), 13–34 (2002)MATHCrossRefGoogle Scholar
  100. 100.
    Tizon, X., Smedby, Ö.: Segmentation with gray-scale connectedness can separate arteries and veins in MRA. J. Magn. Reson. Imaging 15(4), 438–445 (2002)CrossRefGoogle Scholar
  101. 101.
    Tsitsiklis, J.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    Tyrrell, J.A., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R.K., Roysam, B.: Robust 3-D modeling of vasculature imagery using superellipsoids. IEEE Trans. Med. Imaging 26(2), 223–237 (2007)CrossRefGoogle Scholar
  103. 103.
    van Bemmel, C.M., Spreeuwers, L.J., Viergever, M.A., Niessen, W.J.: Level-set-based artery-vein separation in blood pool agent CE-MR angiograms. IEEE Trans. Med. Imaging 22(10), 1224–1234 (2003)CrossRefGoogle Scholar
  104. 104.
    Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1565–1578 (2002)CrossRefGoogle Scholar
  105. 105.
    Vincent, L.: Grayscale area openings and closings, their efficient implementation and applications. In: International Symposium on Mathematical Morphology – ISMM 1993, pp. 22–27. Barcelona, Spain (1993)Google Scholar
  106. 106.
    Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001. Lecture Notes in Computer Science, vol. 2208, pp. 770–777. Springer, Berlin (2001)Google Scholar
  107. 107.
    Wilson, D.L., Noble, J.A.: An adaptive segmentation algorithm for time-of-flight MRA data. IEEE Trans. Med. Imaging 18(10), 938–945 (1999)CrossRefGoogle Scholar
  108. 108.
    Wink, O., Frangi, A.F., Verdonck, B., Viergever, M.A., Niessen, W.J.: 3D MRA coronary axis determination using a minimum cost path approach. Magn. Reson. Med. 47(6), 1169–1175 (2002)CrossRefGoogle Scholar
  109. 109.
    Wink, O., Niessen, W.J., Viergever, M.A.: Fast delineation and visualization of vessels in 3-D angiographic images. IEEE Trans. Med. Imaging 19(4), 337–346 (2000)CrossRefGoogle Scholar
  110. 110.
    Wong, W.C.K., Chung, A.C.S.: Probabilistic vessel axis tracing and its application to vessel segmentation with stream surfaces and minimum cost paths. Med. Image Anal. 11(6), 567–587 (2007)CrossRefGoogle Scholar
  111. 111.
    Wörz, S., Rohr, K.: A new 3D parametric intensity model for accurate segmentation and quantification of human vessels. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2004. Lecture Notes in Computer Science, vol. 3216, pp. 491–499. Springer, Berlin (2004)Google Scholar
  112. 112.
    Wörz, S., Rohr, K.: Segmentation and quantification of human vessels using a 3-D cylindrical intensity model. IEEE Trans. Image Process.16(8), 1994–2004 (2007)MathSciNetCrossRefGoogle Scholar
  113. 113.
    Wyatt, C., Bayram, E., Ge, Y.: Minimum reliable scale selection in 3D. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 481–487 (2006)CrossRefGoogle Scholar
  114. 114.
    Yim, P.J., Choyke, P.L., Summers, R.M.: Gray-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Trans. Med. Imaging 19(6), 568–576 (2000)CrossRefGoogle Scholar
  115. 115.
    Zahlten, C., Jürgens, H., Evertsz, C.J.G., Leppek, R., Peitgen, H.O., Klose, K.J.: Portal vein reconstruction based on topology. Eur. J. Radiol. 19(2), 96–100 (1995)CrossRefGoogle Scholar
  116. 116.
    Zitová, B., Flusser, J.: Image registration methods: A survey. Image Vis. Comput. 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  117. 117.
    Zucker, S.W.: Region growing: Childhood and adolescence. Comput. Graph. Image Process. 5(3), 382–399 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Olena Tankyevych
    • 1
  • Hugues Talbot
    • 2
  • Nicolas Passat
    • 3
  • Mariano Musacchio
    • 4
  • Michel Lagneau
    • 4
  1. 1.Laboratoire d’Informatique Gaspard-Monge – UMR CNRS 8049Université Paris-EstParisFrance
  2. 2.Université Paris-EstParisFrance
  3. 3.Université de StrasbourgStrasbourgFrance
  4. 4.Hôpital Louis-PasteurColmarFrance

Personalised recommendations