Advertisement

Image Analysis of Retinal Images

  • Michael J. CreeEmail author
  • Herbert F. Jelinek
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

The eye is sometimes said to provide a window into the health of a person for it is only in the eye that one can actually see the exposed flesh of the subject without using invasive procedures. That ‘exposed flesh’ is, of course, the retina, the light sensitive layer at the back of the eye. There are a number of diseases, particularly vascular disease, that leave tell-tale markers in the retina. The retina can be photographed relatively straightforwardly with a fundus camera and now with direct digital imaging there is much interest in computer analysis of retinal images for identifying and quantifying the effects of diseases such as diabetes.

Keywords

Diabetic Retinopathy Retinal Image Proliferative Diabetic Retinopathy Scanning Laser Ophthalmoscope Fundus Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Asvestas, P., Matsopoulos, G.K., Nikita, K.S.: Estimation of fractal dimension of images using a fixed mass appoach. Patt. Recog. Lett. 20, 347–354 (1999)CrossRefGoogle Scholar
  2. 2.
    Baudoin, C., Maneschi, F., Quentel, G., Soubrane, G., Hayes, T., Jones, G., Coscas, G., Kohner, E.M.: Quantitative-evaluation of fluorescein angiograms – microaneurysm counts. Diabetes 32, 8–13 (1983)Google Scholar
  3. 3.
    Chaudhuri, S., Chatterjee, S., Katz, N.P., Nelson, M., Goldbaum, M.H.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Im. 8, 263–269 (1989)CrossRefGoogle Scholar
  4. 4.
    Cheng, S.C., Huang, Y.M.: A novel approach to diagnose diabetes based on the fractal characteristics of retinal images. IEEE Trans. Inf. Technol. Biomed. 7(3), 163–170 (2003)CrossRefGoogle Scholar
  5. 5.
    Cheung, N., Donaghue, K.C., Liew, G., Rogers, S.L., Wang, J.J., Lim, S.W., Jenkins, A.J., Hsu, W., Lee, M.L., Wong, T.Y.: Quantitative assessment of early diabetic retinopathy using fractal analysis. Diabetes Care 32, 106–110 (2009)CrossRefGoogle Scholar
  6. 6.
    Cheung, N., Wong, T.Y., Hodgson, L.: Retinal vascular changes as biomarkers of systemic cardiovasular diseases. In: Jelinek, H.F., Cree, M.J. (eds.) Automated Image Detection of Retinal Pathology, pp. 185–219. CRC Press, Boca Raton, FL (2010)Google Scholar
  7. 7.
    Coyne, K.S., Margolis, M.K., Kennedy-Matrin, T., Baker, T.M., Klein, R., Paul, M.D., Revicki, D.A.: The impact of diabetic retinopathy: Perspectives from patient focus groups. Fam. Pract. 21, 447–453 (2004)CrossRefGoogle Scholar
  8. 8.
    Cree, M.J.: Automated microaneurysm detection for screening. In: Jelinek, H.F., Cree, M.J. (eds.) Automated Image Detection of Retinal Pathology, pp. 155–184. CRC Press, Boca Raton, FL (2010)Google Scholar
  9. 9.
    Cree, M.J., Olson, J.A., McHardy, K.C., Sharp, P.F., Forrester, J.V.: A fully automated comparative microaneurysm digital detection system. Eye 11, 622–628 (1997)CrossRefGoogle Scholar
  10. 10.
    Cree, M.J., Olson, J.A., McHardy, K.C., Sharp, P.F., Forrester, J.V.: The preprocessing of retinal images for the detection of fluorescein leakage. Phys. Med. Biol. 44, 293–308 (1999)CrossRefGoogle Scholar
  11. 11.
    Estrozi, L.F., Rios, L.G., Campos, A.G., Cesar Jr, R.M., d. F. Costa, L.: 1D and 2D Fourier-based approaches to numeric curvature estimation and their comparative performance assessment. Digit. Signal Process. 13, 172–197 (2003)Google Scholar
  12. 12.
    Fleming, A.D., Philip, S., Goatman, K.A., Olson, J.A., Sharp, P.F.: Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans. Med. Im. 25(9), 1223–1232 (2006)CrossRefGoogle Scholar
  13. 13.
    Foracchia, M., Grisan, E., Ruggeri, A.: Luminosity and contrast normalization in retinal images. Med. Im. Anal. 9, 179–190 (2005)CrossRefGoogle Scholar
  14. 14.
    Foster, A., Resnikoff, S.: The impact of Vision 2020 on global blindness. Eye 19(10), 1133–1135 (2005)CrossRefGoogle Scholar
  15. 15.
    Fritzsche, K.H., Stewart, C.V., Roysam, B.: Determining retinal vessel widths and detection of width changes. In: Jelinek, H.F., Cree, M.J. (eds.) Automated Image Detection of Retinal Pathology, pp. 269–304. CRC Press, Boca Raton, FL (2010)Google Scholar
  16. 16.
    Gamble, E.: Microaneurysm detection in directly acquired colour digital fundus images. Master’s thesis, University of Waikato, Hamilton, New Zealand (2005)Google Scholar
  17. 17.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Upper Saddle River, NJ (2002)Google Scholar
  18. 18.
    Hossain, P., Liversidge, J., Cree, M.J., Manivannan, A., Vieira, P., Sharp, P.F., Brown, G.C., Forrester, J.V.: In vivo cell tracking by scanning laser ophthalmoscopy: Quantification of leukocyte kinetics. Invest. Ophthalmol. Vis. Sci. 39, 1879–1887 (1998)Google Scholar
  19. 19.
    Huang, K., Yan, M.: A local adaptive algorithm for microaneurysms detection in digital fundus images. In: Proceedings of Computer Vision for Biomedical Image Applications, Lecture Notes in Computer Science, vol. 3765, pp. 103–113 (2005)Google Scholar
  20. 20.
    Jelinek, H.F., Cree, M.J. (eds.): Automated Image Detection of Retinal Pathology. CRC Press, Boca Raton, FL (2010)Google Scholar
  21. 21.
    Jelinek, H.F., Cree, M.J., Leandro, J.J.G., Soares, J.V.B., Cesar Jr, R.M.: Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy. J. Opt. Soc. Am. A 24, 1448–1456 (2007)CrossRefGoogle Scholar
  22. 22.
    Kanski, J.: Clinical Ophthalmology: A Systematic Approach. Butterworth-Heinemann, Boston (1989)Google Scholar
  23. 23.
    Klein, R., Klein, B.E., Moss, S.E., Wong, T.Y., Hubbard, L., Cruickshanks, K.J., Palta, M.: The relation of retinal vessel caliber to the incidence and progression of diabetic retinopathy: XIX: The Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch. Ophthalmol. 122(1), 76–83 (2004)CrossRefGoogle Scholar
  24. 24.
    Laÿ, B., Baudoin, C., Klein, J.C.: Automatic detection of microaneurysms in retinopathy fluoro-angiogram. Proc. SPIE 432, 165–173 (1983)Google Scholar
  25. 25.
    Masters, B.R.: Fractal analysis of the vascular tree in the human retina. Annu. Rev. Biomed. Eng. 6, 427–452 (2004)CrossRefGoogle Scholar
  26. 26.
    Niemeijer, M., van Ginneken, B., Cree, M.J., Mizutani, A., Quellec, G., Sanchez, C.I., Zhang, B., Hornero, R., Lamard, M., Muramatsu, C., Wu, X., Cazuguel, G., You, J., Mayo, A., Li, Q., Hatanaka, Y., Cochener, B., Roux, C., Karray, F., Garcia, M., Fujita, H., Abramoff, M.D.: Retinopathy online challenge: Automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans. Med. Im. 29, 185–195 (2010)CrossRefGoogle Scholar
  27. 27.
    Perreault, S., Hébert, P.: Median filtering in constant time. IEEE Trans. Im. Proc. 16(9), 2389–2394 (2007)CrossRefGoogle Scholar
  28. 28.
    Sherry, L.M., Wang, J.J., Rochtchina, E., Wong, T., Klein, R., Hubbard, L.D., Mitchell, P.: Reliability of computer-assisted retinal vessel measurement in a population. Clin. Experiment. Ophthalmol. 30, 179–82 (2002)CrossRefGoogle Scholar
  29. 29.
    Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Im. 25, 1214–1222 (2006)CrossRefGoogle Scholar
  30. 30.
    Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Berlin, Germany (2004)Google Scholar
  31. 31.
    Spencer, T., Olson, J.A., McHardy, K.C., Sharp, P.F., Forrester, J.V.: An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus. Comp. Biomed. Res. 29, 284–302 (1996)CrossRefGoogle Scholar
  32. 32.
    Spencer, T., Phillips, R.P., Sharp, P.F., Forrester, J.V.: Automated detection and quantification of microaneurysms in fluorescein angiograms. Graefes Arch. Clin. Exp. Ophthalmol. 230, 36–41 (1992)CrossRefGoogle Scholar
  33. 33.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. Im. Proc. 2, 176–201 (1993)CrossRefGoogle Scholar
  34. 34.
    Walter, T., Klein, J.C.: Automatic detection of microaneurysms in color fundus images of the human retina by means of the bounding box closing. In: Proceedings Medical Data Analysis, Lecture Notes in Computer Science, vol. 2526, pp. 210–220 (2002)Google Scholar
  35. 35.
    Walter, T., Massin, P., Erginay, A., Ordonez, R., Jeulin, C., Klein, J.C.: Automatic detection of microaneurysms in color fundus images. Med. Im. Anal. 11, 555–566 (2007)CrossRefGoogle Scholar
  36. 36.
    Wang, J.J., Mitchell, P., Sherry, L.M., Smith, W., Wong, T.Y., Klein, R., Hubbard, L.D., Leeder, S.R.: Generalized retinal arteriolar narrowing predicts 5-year cardiovascular and cerebro-vascular mortality: Findings from the Blue Mountains Eye Study. Invest. Ophthalmol. Vis. Sci. p. 43 (2002)Google Scholar
  37. 37.
    Witt, N.W., Martinez-Pérez, M.E., Parker, K.H., Thom, S.A.M., Hughes, A.D.: Geometrical and topological analysis of vascular branches from fundus retinal images. In: Jelinek, H.F., Cree, M.J. (eds.) Automated Image Detection of Retinal Pathology, pp. 305–338. CRC Press, Boca Raton, FL (2010)Google Scholar
  38. 38.
    Xu, H., Manivannan, A., Goatman, K.A., Liversidge, J., Sharp, P.F., Forrester, J.V., Crane, I.J.: Improced leukocyte tracking in mouse retinal and choroidal circulation. Exp. Eye Res. 74, 403–410 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University of WaikatoHamiltonNew Zealand
  2. 2.Charles Stuart UniversityAlburyAustralia

Personalised recommendations