Electrophoretic Deposition (EPD): Fundamentals and Novel Applications in Fabrication of Advanced Ceramic Microstructures

  • Partho SarkarEmail author
  • Debnath De
  • Tetsuo Uchikochi
  • Laxmidhar Besra
Part of the Nanostructure Science and Technology book series (NST)


This chapter provides critical review on the fundamentals of the process of Electrophoretic Deposition (EPD), a powerful, facile and versatile forming or consolidation technique. This chapter also establishes that like an ideal consolidation process, EPD can (a) produce homogeneous and dense green bodies, (b) produce complicated shapes effectively and easily, and (c) allow flexibility in microstructural manipulation i.e. can produce a wide montage of advance micro and nano-structured materials ranging from dispersed, laminated, fiber-reinforced composites to functionally graded materials having diverse applications ranging from solid oxide fuel cell to bio-compatible coatings on implants to pseudo light emitting devices, etc. This chapter also identifies the myths, potential future applications and the outstanding fundamental issues in the process of EPD that require more attention from the research community.


Zeta Potential Deposition Time Simulated Body Fluid Electrophoretic Deposition Suspension Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to several coworkers for useful discussions during the course of the research discussed in this manuscript.


  1. 1.
    Sarkar, P., Nicholson, P.S.: Electrophoretic deposition (EPD): Mechanisms, Kinetics and Applications to Ceramics. J. Am. Ceram. Soc. 79, 1987–2002 (1996)CrossRefGoogle Scholar
  2. 2.
    Kellet, B.J., Lange, F.F.: Thermodynamics of densification: I, sintering of simple particle arrays, equilibruim configurations, pore stability, and shrinkage. J. Am. Ceram. Soc. 72, 725–734 (1989)CrossRefGoogle Scholar
  3. 3.
    Sarkar, P., De, D., Rho, H.: Synthesis and microstructural manipulation of ceramics by electrophoretic deposition. J. Mater. Sci. 39, 819–823 (2004)CrossRefGoogle Scholar
  4. 4.
    Sarkar, P., De, D., Yamashita, K., Nicholson, P.S., Umegaki, T.: Mimicking nanometer atomic processes on a micrometer scale via electrophoretic deposition. J. Am. Ceram. Soc. 83, 1399–1401 (2000)CrossRefGoogle Scholar
  5. 5.
    Frens, G., Overbeek, JT.: Repeptization and theory of electrocratic colloids. J. Colloid Interface Sci. 38, 376–387 (1972)CrossRefGoogle Scholar
  6. 6.
    Koelmans, H., Van Boxte, A.M.: Electrohydrodynamic flow in nematic liquid crystals. Mol. Cryst. Liq. Cryst. 12, 185–191 (1971)CrossRefGoogle Scholar
  7. 7.
    Shimbo, M., Tanzawa, K., Miyakawa, M., Emoto, T.: Electrophoretic deposition of glass powder for passivation of high-voltage transistors. J. Electrochem. Soc. 132, 393–398 (1985)CrossRefGoogle Scholar
  8. 8.
    Mizuguchi, J., Sumi, K., Muchi, T.: A Highly Stable Non-aqueous Suspension for the Electrophoretic Deposition of Powdered Substances. J. Electrochem. Soc. 130, 1819–1825 (1983)CrossRefGoogle Scholar
  9. 9.
    Brown, D.R., Salt, F.W.: The mechanism of electrophoretic deposition. J. Appl. Chem. 15, 40–48 (1965)CrossRefGoogle Scholar
  10. 10.
    Hamaker, H.C.: Formation of deposition by electrophoresis. Trans. Faraday Soc. 36, 279–287 (1940)Google Scholar
  11. 11.
    Hamaker, H.C., Verwey, E.J.W.: Colloid stability: the role of the forces between the particles in the electrodeposition and other phenomena. Trans. Faraday Soc. 36, 180–185 (1940)CrossRefGoogle Scholar
  12. 12.
    Giersig, M., Mulvaney, P.: Formation of ordered two-dimensional gold colloid lattices by electrophoretic deposition. J. Phys. Chem. 97, 6334–6336 (1993)CrossRefGoogle Scholar
  13. 13.
    De, D., Nicholson, P.S.: Role of ionic depletion in deposition during electrophoretic deposition. J. Am. Ceram. Soc. 81 (11), 3031–3036 (1999)Google Scholar
  14. 14.
    Besra, L., Uchikoshi, T., Suzuki, T.S., Sakka, Y.: Experimental verification of pH localization mechanism of particle consolidation at the electrode/solution interface and its application to pulsed DC Electrophoretic deposition (EPD). J. Eur. Ceram. Soc. 30, 1187–1193 (2010)Google Scholar
  15. 15.
    Besra, L., Liu, M.: A review on fundamental and applications of Electrophoretic deposition. Prog. Mater. Sci. 52(1), 1–61 (2007)CrossRefGoogle Scholar
  16. 16.
    Avgustinik, A.I., Vigdergauz, V.S., Zharavlev, G.I.: Electrophoretic deposition of ceramic masses from suspension and calculation of deposit yields. J. Appl. Chem. USSR (English Translation). 35(10), 2175–2180 (1962)Google Scholar
  17. 17.
    Biesheuvel, P.M., Verweij, H.: Theory of cast formation in electrophoretic deposition. J. Am. Ceram. Soc. 82(6), 1451–1455 (1999)CrossRefGoogle Scholar
  18. 18.
    Ishihara, T., Shimise, K., Kudo, T., Nishiguchi, H., Akbay, T., Takita, Y.: Preparation of Yttria-stabilised zirconia thin-films on strontium doped LaMnO3 cathode substrate via Electrophoretic deposition for solid oxide fuel cells. J. Am. Ceram. Soc. 83(8), 1921–1927 (2000)CrossRefGoogle Scholar
  19. 19.
    Chen, F., Liu, M.: Preparation of yttria-stabilised zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrate using an electrophoretic deposition (EPD) process. J. Eur. Ceram. Soc. 21, 127–134 (2001)CrossRefGoogle Scholar
  20. 20.
    Heavens, N.: Electrophoretic deposition as a processing route for ceramics. In: Binner, G.P. (ed.) Advanced ceramic processing and Technology, vol. 1. Noyes Publications, Park Ridge (1990)Google Scholar
  21. 21.
    Sato, N., Kawachi, M., Noto, K., Yoshimoto, N., Yoshizawa, M.: Effect of particle size reduction on crack formation in electrophoretically deposited YBCO films. Physica C. 357–360, 1019–1022 (2001)CrossRefGoogle Scholar
  22. 22.
    Powers, RW. The electrophoretic forming of beta-alumina ceramic. J Electrochem Soc. 122, 482–486 (1975)CrossRefGoogle Scholar
  23. 23.
    Negishi, H., Yanagishita, H., Yokokawa, H.: Electrophoretic deposition of solid oxide fuel cell material powders. In: Proc. Electrochemical society on Electrophoretic deposition: Fundamentals and Applications, vol. 2002–21. The electrochemical society Inc, Pennington, USA (2002)Google Scholar
  24. 24.
    Ferrari, B., Moreno, R.: The conductivity of aqueous Al2O3 slips for electrophoretic deposition. Mater. Lett. 28, 353–355 (1996)CrossRefGoogle Scholar
  25. 25.
    Ferrari, B., Moreno, R.: Electrophoretic deposition of aqueous alumina slip. J. Eur. Ceram. Soc. 17, 549–556 (1997)CrossRefGoogle Scholar
  26. 26.
    Krueger, H.G., Knote, A., Schindler, U., Kern, H., Boccaccini, A.: Composite ceramic metal coatings by means of combined electrophoretic deposition. J. Mater. Sci. 39, 839–844 (2004)CrossRefGoogle Scholar
  27. 27.
    Zarbov, M., Schuster, I., Gal-Or, L.: Methodology for selection of charging agents for electrophoretic deposition of ceramic particles. In: Proc. of the International symposium on Electrophoretic deposition: Fundamentals and applications, vol. 2002–21. The electrochemical society Inc, Pennington, USA (2002)Google Scholar
  28. 28.
    Brown, D.R., Salt, F.W.: The mechanism of electrophoretic deposition. J. Appl. Chem. 15, 40–48 (1965)CrossRefGoogle Scholar
  29. 29.
    Basu, R.N., Randall, C.A., Mayo, M.J.: Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. J. Am. Ceram. Soc. 84(1), 33–40 (2001)CrossRefGoogle Scholar
  30. 30.
    Wang, Y.C., Leu, I.C., Hon, M.H.: Kinetics of electrophoretic deposition for nanocryatalline zinc oxide coatings. J. Am. Ceram. Soc. 87(1) 84–88 (2004)CrossRefGoogle Scholar
  31. 31.
    Zhitomirsky, I., Gal-or, L.: Electrophoretic deposition of hydroxyapatite. J. Mater. Sci: Mater. Med. 8, 213–219 (1997)Google Scholar
  32. 32.
    Vandeperre, L., Van Der Biest, O., Clegg, W.J.: Silicon carbide laminates with carbon interlayers by electrophoretic deposition. Key Eng. Mater. 1, 127–131 (1997)Google Scholar
  33. 33.
    Peng, Z., Liu, M.: Preparation of dense platinum-yttria stabilized zirconia and yttria stabilized zirconia films on porous La0.9Sr0.1MnO3 (LSM) substrates. J. Am. Ceram. Soc. 84(2), 283–288 (2001)CrossRefGoogle Scholar
  34. 34.
    Ryan, W., Massoud, E.: Electrophoretic deposition could speed up ceramic casting. Interceram. 2, 117–119 (1979)Google Scholar
  35. 35.
    Ryan, W., Massoud, E., Perera, C.T.S.B.: Fabrication by electrophoresis. Trans. Brit. Ceram. Soc. 80, 46–47 (1981)Google Scholar
  36. 36.
    Tabellion, J., Clasen, R.: Electrophoretic deposition from aqueous suspension for near-shape manufacturing of advanced ceramics and glasses-applications. J. Mater. Sci. 39, 803–811 (2004)CrossRefGoogle Scholar
  37. 37.
    Tang, F.Q., Sakka, Y., Uchikoshi, T.: Electrophoretic deposition of aqueous nano-sized zinc oxide suspensions on a zinc electrode. Mater. Res. Bull. 38(2), 207–212 (2003)CrossRefGoogle Scholar
  38. 38.
    Ferrari, B., Farinas, J.C., Moreno, R.: Determination and control of metallic impurities in alumina deposits obtained by aqueous electrophoretic deposition. J. Am. Ceram. Soc. 84(4), 733–739 (2001)CrossRefGoogle Scholar
  39. 39.
    Winkle, M.R.: Elimination of film defects due to hydrogen evolution during cathodic electrodeposition. US Patent No. 5066, (1991)Google Scholar
  40. 40.
    Sakurada, D., Suzuki, K., Miura, T., Hashiba, M.: Bubble-free electrophoretic deposition of aqueous zirconia suspensions with hydroquinone. J. Mater. Sci. 39, 1845–1847 (2004)CrossRefGoogle Scholar
  41. 41.
    Tang, F.Q., Uchikoshi, T., Sakka, Y.: Electrophoretic deposition behavior of aqueous nanosized zinc oxide suspensions. J. Am. Ceram. Soc. 85(9), 2161–2165 (2002)CrossRefGoogle Scholar
  42. 42.
    Uchikoshi, T., Hisashige, T., Sakka, Y.: Stabilisation of Yttria aqueous suspension with polyethyleneimine and electrophoretic deposition. J. Ceram. Soc. Japan. 110, 840–843 (2002)CrossRefGoogle Scholar
  43. 43.
    Uchikoshi, T., Ozawa, K., Hatton, BD., Sakka, Y.: Dense, bubble-free, ceramic deposits from aqueous suspensions by electrophoretic deposition. J. Mater. Res. 16 (2), 321–324 (2001)CrossRefGoogle Scholar
  44. 44.
    Wang, Y., Liu, FQ., Duboust, A., Neo, SS., Yuh Chen, L., Hu, Y.: Hydrogen bubble reduction on the cathode using double cell design. US Patent No. 7229535 B2 (2007)Google Scholar
  45. 45.
    Besra, L., Uchikoshi, T., Suzuki, TS., Sakka, Y.: Bubble-free aqueous electrophoretic deposition (EPD) by pulse potential application. J. Am. Ceram. Soc. 91(10), 3154–3159 (2008)CrossRefGoogle Scholar
  46. 46.
    Besra, L., Uchikoshi, T., Suzuki, T.S., Sakka, Y.: Application of constant current pulse to suppress bubble incorporation and control deposit morphology during aqueous electrophoretic deposition (EPD). J. Eur. Ceram. Soc. 29, 1837–1845 (2009)CrossRefGoogle Scholar
  47. 47.
    Sarkar, P., Mathur, S., Nicholson, P.S., Stager, C.V.: Fabrication of Texture Bi-Sr-Ca-Cu-O Thick Film by Electrophoretic Deposition. J Appl. Phys. 69, 1775 (1991)CrossRefGoogle Scholar
  48. 48.
    Sarkar, P., Nicholson, P.S.: Magnetically-enhanced reactive-sintering of textured YBa2Cu3OX″, P. Sarkar and P.S. Nicholson. Appl. Phy. Lett. 61, 492 (1992)CrossRefGoogle Scholar
  49. 49.
    Zhitomirsky, I., Petric. A.: Electrolytic deposition of zirconia and zirconia organoceramic composites. Mater. Lett. 46, 1–6 (2000)CrossRefGoogle Scholar
  50. 50.
    Zhitomirsky, I., Petric, A.: Fabrication of organoceramic films by electrodeposition. Bull. Am. Ceram. Soc. 80, 41–46 (2001)Google Scholar
  51. 51.
    Sarkar, P., De, D.: Unpublished workGoogle Scholar
  52. 52.
    Sarkar, P., Huang, X., Nicholson, P.S.: Structural ceramic microlaminates by electrophoretic deposition. J. Am. Ceram. Soc. 75, 2907 (1992)CrossRefGoogle Scholar
  53. 53.
    Sarkar, P., Huang, X., Nicholson, P.S.: Zirconia-Alumina functionally-gradiented composites by electrophoretic deposition techniques. J. Am. Ceram. Soc. 76, 1055 (1993)CrossRefGoogle Scholar
  54. 54.
    Nicholson, P.S., Sarkar, P., Datta, S.: Producing ceramic laminate composites by EPD. Am. Ceram. Soc. Bull. 75, 48 (1996)Google Scholar
  55. 55.
    Prakash, O., Sarkar, P., Nicholson, P.S.: Structure and fracture behaviour of t-ZrO2/Al2O3 lamellar composites. Fatigue Fract. Eng. Mater. Struct. 18, 897 (1995)CrossRefGoogle Scholar
  56. 56.
    Nicholson, P.S., Sarkar, P., Huang, X.: Potentially Strong and Tough ZrO2-Based Ceramic Composites at 1300°C by Electrophoretic Deposition. In: Badwal, S.P.S., Bannistar, M.J., Hannik, R.H.J. (eds.) Science and Technology of Zirconia V, Technomic Publishing Company, Inc., Lancaster, Pennsylvania, USA, p. 503 (1993)Google Scholar
  57. 57.
    Illston, T.J., Ponton, C.B., Marquis, P.M., Urler, G.: Electrophoretic deposition of Silica/Alumina colloids for the manufacture of CMC’s. Ceram. Eng. Sci. Proc. 15, 1052 (1994)CrossRefGoogle Scholar
  58. 58.
    Boccaccini, A.R., Ponton, C.B.: Processing ceramic-matrix composites using electrophoretic deposition. JOM Oct: 34 (1995)Google Scholar
  59. 59.
    Ishihara, T., Sato, K., Mizuhara, Y., Takita, Y.: Preparation of yittria-stabilized zirconia films for solid oxide fuel cells by electrophoretic deposition method. Chem. Lett. 992, 943–946 (1992)CrossRefGoogle Scholar
  60. 60.
    Krkljuš, I., Branković, Z., Katarina ,uriš., Vukotić, V., Brankovic, G.: The electrophoretic deposition of lanthanum manganite powders for a cathode-supported solid oxide fuel cell in planar and tubular configurations. Int. J. Appl. Ceram. Technol. 5(6), 548–556 (2008)CrossRefGoogle Scholar
  61. 61.
    Matsuda, M., Hosomi, T., Murata, K., Fukui, T., Miyake, M.: Direct EPD of YSZ electrolyte film onto porous NiO-YSZ composite substrate for reduced-temperature operating anode-supported SOFC. Electrochem. Solid State Lett. 8(1), A8–A11 (2005)CrossRefGoogle Scholar
  62. 62.
    Hosomi, T., Matsuda, M., Miyake, M.: Electrophoretic deposition for fabrication of YSZ electrolyte film on non-conducting porous NiO-YSZ composite substrate for intermediate temperature SOFC. J. Eur. Ceram. Soc. 27, 173–178 (2007)CrossRefGoogle Scholar
  63. 63.
    Besra, L., Liu, M. Electrophoretic deposition on non conducting substrates: the case of YSZ film on NiO-YSZ composite substrates for Solid oxide fuel cell application. J. Power Sources 173(1), 130–136 (2007)CrossRefGoogle Scholar
  64. 64.
    Sarkar, P., Yamarte, L., Rho, H. Johanson, J.: Anode-Supported Micro-Solid Oxide Fuel Cell. Int. J. Appl. Ceram. Technol. 4, 103 (2007)CrossRefGoogle Scholar
  65. 65.
    Tian, Z.R., Voigt, J.A., Liu, J., McKenzie, B., Mcdermott, M. J., Rodriguez, M.A., Konishi, H., Xu, H.: Compex and oriented ZnO nanostructures. Nature 2, 821–826 (2003)CrossRefGoogle Scholar
  66. 66.
    Youngblood, G.E., Gordon, R.S.: Texture-conductivity relationships in polycrystalline lithia-stabilized β″-Alumina. Ceram. Int. 4(3), 93–98 (1978)CrossRefGoogle Scholar
  67. 67.
    Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., List, F.A.: Epitaxial YBa2Cu3O7 on Biaxially Textured Nickel (001): An Approach to Superconducting Tapes with High Critical Current Density. Science 274, 755–757 (1996)CrossRefGoogle Scholar
  68. 68.
    Uchikoshi, T., Suzuki, T.S., Okuyama, H., Sakka, Y., Nicholson, P.S.: Electrophoretic deposition of alumina suspension in a strong magnetic field. J. Eur. Ceram. Soc. 24, 225–229 (2004)CrossRefGoogle Scholar
  69. 69.
    Uchikoshi, T., Suzuki, T.S., Tang, F.Q., Okuyama, H., Sakka, Y.: Crystalline-oriented TiO2 fabricated by electrophoretic deposition in a strong magnetic field. Ceram. Int. 30, 1975–1978 (2004)CrossRefGoogle Scholar
  70. 70.
    Uchikoshi, T., Suzuki, T.S., Iimura, S., Tang, F., Sakka, Y.: Control of crystalline texture in polycrystalline TiO2 (anatase) by electrophoretic deposition in a strong magnetic field. J. Eur. Ceram. Soc. 26, 559–563 (2006)CrossRefGoogle Scholar
  71. 71.
    Sakka, Y., Suzuki, T.S., Uchikoshi, T.: Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering. J. Eur. Ceram. Soc. 28(5), 935–942 (2008)CrossRefGoogle Scholar
  72. 72.
    Habibovic, P., Barrere, F., van Blitterswijk, C.A., de Groot, K., Layrolle, P.: Biomimetic hydroxyapatite coating on metal implants. J. Am. Ceram. Soc. 85(3), 517–522 (2002)CrossRefGoogle Scholar
  73. 73.
    Ma, J., Liang, C.H., Kong, L.B., Wang, C.: Colloidal characterization and electrophoretic deposition of hydroxyapatite on titanium substrate. J. Mater. Sci.: Mater. Med. 14, 797–801 (2003)Google Scholar
  74. 74.
    Wei, M., Ruys, A.J., Milthorpe, B.K., Sorrell, C.C., Evans, J.H.: Electrophoretic deposition of hydroxyapatite coatings on metal substrates: a nanoparticulate dual-coating approach. J. Sol-gel Sci. Technol. 21, 39–48 (2001)CrossRefGoogle Scholar
  75. 75.
    Mayr, H., Ordung, M., Ziegler, G. Development of thin electrophoretically deposited hydroxyapatite layers on TiAl6V4 hip prosthesis. J. Mater. Sci. 41, 8138–8143 (2006)CrossRefGoogle Scholar
  76. 76.
    Stoch, A., Brozek, A., Kmita, G., Stoch, J., Jastrzebski, W., Rakowska, A.: Electrophoretic coating of hydroxyapatite on titanium implants. J. Mol. Struct. 596, 191–200 (2001)CrossRefGoogle Scholar
  77. 77.
    Hamagami, J.I., Ato, Y., Kanamura, K.: Fabrication of highly ordered macroporous apatite coating onto titanium by electrophoretic deposition. Solid State Ionics 172(1–4), 331–334 (2004)CrossRefGoogle Scholar
  78. 78.
    Sridhar, T.M., Mudali, U.K., Subbaiyan, M.: Preparation and characterissation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel. Corros. Sci. 45, 237–252 (2003)CrossRefGoogle Scholar
  79. 79.
    Kitabatake, T., Uchikoshi, T., Munakata, F., Sakka, Y., Hirosaki, N.: Electrophoretic deposition of Eu2+ doped Ca-a-SiAlON phosphor particles for packaging of flat pseudo-white light emitting devices. J. Ceram. Soc. Japan 116(6), 740–743 (2008)CrossRefGoogle Scholar
  80. 80.
    Bailey, R.C., Stevenson, K.J., Hupp, J.T.: Assembly of micropatterned colloidal gold thin film via microtransfer molding and electrophoretic deposition. Adv. Mater. 12(24), 1930–1934 (2002)CrossRefGoogle Scholar
  81. 81.
    Giersig, M., Mulvaney, P.: Formation of ordered two-dimensional gold colloid lattices by electrophoretic deposition. J. Phys. Chem. 97, 6334–6336 (1993)CrossRefGoogle Scholar
  82. 82.
    Giersig, M., Mulvaney, P.: Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408–3413 (1993)CrossRefGoogle Scholar
  83. 83.
    Yeh, S.R., Michael, S., Boris, I.S.: Assembly of ordered colloidal aggregates by electric-field-induced fluid flow. Nature 386, 57–59 (1997)CrossRefGoogle Scholar
  84. 84.
    Trau, M., Saville, D.A., Aksay, I.A.: Field induced layering of colloidal crystals. Science 272, 706–709 (1996)PubMedCrossRefGoogle Scholar
  85. 85.
    Tabellion, J., Clasen, R.: Electrophoretic deposition from aqueous suspension for near-shape manufacturing of advanced ceramics and glasses-applications. J. Mater. Sci. 39, 803–811 (2004)CrossRefGoogle Scholar
  86. 86.
    Boehmer, M.: In situ observation of 2-dimensional clustering during electrophoretic deposition. Langmuir 12(4), 5747–5750 (1996)CrossRefGoogle Scholar
  87. 87.
    Hayward, R.C., Saville, D.A., Aksay, I.A.: Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature 4 0 4, 56–59 (2000)Google Scholar
  88. 88.
    Kamacheva, E., Golding, R.K., Allard, M., Sargent, E.H.: Colloid crystal growth on mesoscopically patterned surfaces: effect of confinement. Adv. Mater. 14(3), 221–224 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Partho Sarkar
    • 1
    Email author
  • Debnath De
    • 2
  • Tetsuo Uchikochi
    • 3
  • Laxmidhar Besra
    • 4
  1. 1.Clean Energy, Environment & Carbon Management DivisionAlberta Innovates-Technology FuturesEdmontonCanada
  2. 2.MalvernUSA
  3. 3.Nano Ceramics Centre, Fine Particle Processing GroupNational Institute for Materials Science (NIMS)TsukubaJapan
  4. 4.Colloids & Materials Chemistry DepartmentInstitute of Minerals & Materials Technology (IMMT)BhubaneswarIndia

Personalised recommendations