Mechanisms of Directed Assembly of Colloidal Particles in Two Dimensions by Application of Electric Fields

  • Paul J. Sides
  • Christopher L. Wirth
  • Dennis C. Prieve
Part of the Nanostructure Science and Technology book series (NST)


When electric fields interact with particles immersed in liquids and levitated near electrodes, the particles assemble into structures such as ordered arrays or chains. For example, direct electric current flowing through an aqueous solution held between two parallel-plate electrodes produces two dimensional arrays of colloidal particles near one of the electrodes. A high frequency electric field imposed in-plane, by contrast, forms chains of particles. These phenomena have interested scientists and engineers for a century; the multiphysics of the phenomena make it a rich problem for both theoreticians and experimentalists. Experimental investigations into the translation of particles laterally along surfaces when electric fields are applied normally to those surfaces, and into chain formation when the field is applied tangentially, have led to proposed mechanisms and theory by which colloidal particles and even cells move relative to the nearby surface and relative to each other. These mechanisms-, electrophoresis, electroosmosis, electrohydrodynamics, induced dipole repulsion, and dielectrophoresis- and supporting experimental evidence are the main topics of this account.


Zeta Potential Phase Angle Electric Field Gradient Electroosmotic Flow Directed Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support of the National Science Foundation for research on this topic through grants CTS0089875, CTS0338089, and CBET0730391.


  1. 1.
    Böhmer, M: In situ observation of 2-dimensional clustering during electrophoretic deposition. Langmuir 12, 5747–5750 (1996)CrossRefGoogle Scholar
  2. 2.
    Hermanson, K.D., Lumsdon, S.O., Williams, J.P., Kaler, E.W., Velev, O.D.: Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294, 1082–1086 (2001)PubMedCrossRefGoogle Scholar
  3. 3.
    Pohl, H.: The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22, 871 (1951)CrossRefGoogle Scholar
  4. 4.
    Pohl, H.A.: Dielectrophoresis. Cambridge University Press, Cambridge (1978)Google Scholar
  5. 5.
    Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  6. 6.
    Green, N.G., Ramos, A., Morgan, H.: Ac electrokinetics: a survey of sub-micrometre particle dynamics. J. Phys. D: Appl. Phys. 33, 632–641 (2000)CrossRefGoogle Scholar
  7. 7.
    Velev, O.D.: Assembly of electrically functional microstructures from colloidal particles. In: Caruso F. (ed.) Colloids and Colloid Assemblies. Wiley, Weinheim (2004)Google Scholar
  8. 8.
    Velev, O.D., Bhatt, K.H.: On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2, 738–750 (2006)CrossRefGoogle Scholar
  9. 9.
    Velev, O.D., Gupta, S.: Materials fabricated by micro- and nanoparticle assembly—the challenging path from science to engineering. Adv. Mater. 21, 1897–1905 (2009)CrossRefGoogle Scholar
  10. 10.
    Velev, O.D., Gangwal, S., Petsev, D.N.: Particle-localized AC and DC manipulation and electrokinetics. Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 105, 213–246 (2009)CrossRefGoogle Scholar
  11. 11.
    Lyklema, J.: Fundamentals of Interface and Colloid Science, vol. 4. Elsevier, Amsterdam (2005)Google Scholar
  12. 12.
    Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  13. 13.
    Prieve, D.C., Sides, P.J., Wirth, C.L.: Current Opinion in Colloid and Interface Science. doi:10.1016/j.cocis.2010.01.005 (2010)Google Scholar
  14. 14.
    Richetti, P., Prost, J.F., Barois, P.: Two-dimensional aggregation and crystallization of a colloidal suspension of latex spheres. J. Phys. Lett. 45, 1137–1143 (1984)CrossRefGoogle Scholar
  15. 15.
    Giersig, M., Mulvaney, P.: Formation of ordered two-dimensional gold colloid lattices by electrophoretic deposition. J. Phys. Chem. 97, 6334–6336 (1993)CrossRefGoogle Scholar
  16. 16.
    Giersig, M., Mulvaney, P.: Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408–3413 (1993)CrossRefGoogle Scholar
  17. 17.
    Van Der Biest, O.O., Vandeperre, L.J.: Electrophoretic deposition of material. Annu. Rev. Mater. Sci. 29, 327–352 (1999)CrossRefGoogle Scholar
  18. 18.
    Trau, M., Saville, D.A., Aksay, I.A.: Field-induced layering of colloidal crystals. Science 272, 706–709 (1996)PubMedCrossRefGoogle Scholar
  19. 19.
    Yeh, S.R., Seul, M., Shraiman, B.I.: Assembly of ordered colloidal aggregates by electric- field-induced fluid flow. Nature 386, 57–59 (1997)CrossRefGoogle Scholar
  20. 20.
    Solomentsev, Y., Böhmer, M., Anderson, J.L.: Particle clustering and pattern formation during electrophoretic deposition: a hydrodynamic model. Langmuir 13, 6058–6068 (1997)CrossRefGoogle Scholar
  21. 21.
    Trau, M., Saville, D.A., Aksay, I.A.: Assembly of colloidal crystals at electrode interfaces. Langmuir 13, 6375–6381 (1997)CrossRefGoogle Scholar
  22. 22.
    Solomentsev, Y., Guelcher, S.A., Bevan, M., Anderson, J.L.: Aggregation dynamics for two particles during electrophoretic deposition under steady fields. Langmuir 16, 9208–9216 (2000)CrossRefGoogle Scholar
  23. 23.
    Guelcher, S.A., Solomentsev, Y., Anderson, J.L.: Aggregation of pairs of particles on electrodes during electrophoretic deposition. Powder Technol. 110, 90–97 (2000)CrossRefGoogle Scholar
  24. 24.
    Gong, T.Y., Wu, D.T., Marr, D.W.M.: Electrically switchable colloidal ordering in confined geometries. Langmuir 17, 2301–2304 (2001)CrossRefGoogle Scholar
  25. 25.
    Gong, T.Y., Wu, D.T., Marr, D.W.M.: Two-dimensional electrohydrodynamically induced colloidal phases. Langmuir 18, 10064–10067 (2002)CrossRefGoogle Scholar
  26. 26.
    Sides, P.J.: Electrohydrodynamic particle aggregation on an electrode driven by an alternating electric field normal to it. Langmuir 17, 5791–5800 (2001)CrossRefGoogle Scholar
  27. 27.
    Sides, P.J.: Calculation of electrohydrodynamic flow around a single particle on an electrode. Langmuir 19, 2745–2751 (2003)CrossRefGoogle Scholar
  28. 28.
    Nadal, F., Argoul, F., Hanusse, P., Pouligny, B., Ajdari, A.: Electrically induced interactions between colloidal particles in the vicinity of a conducting plane. Phys. Rev. E. 65, 061409-1-5 (2002)Google Scholar
  29. 29.
    Kim, J., Guelcher, S.A., Garoff, S., Anderson, J.L.: Two-particle dynamics on an electrode in AC electric fields. Adv. Coll. Interface Sci. 96, 131–142 (2002)CrossRefGoogle Scholar
  30. 30.
    Kim, J., Anderson, J.L., Garoff, S., Sides, P.J.: Effects of zeta potential and electrolyte on particle interactions on an electrode under AC polarization. Langmuir 18, 5387–5391 (2002)CrossRefGoogle Scholar
  31. 31.
    Fagan, J.A., Sides, P.J., Prieve, D.C.: Vertical oscillatory motion of a single colloidal particle adjacent to an electrode in an AC electric field. Langmuir 18, 7810–7820 (2002)CrossRefGoogle Scholar
  32. 32.
    Prieve, D.C.: Measurement of colloidal forces with TIRM. Adv. Coll. Interface Sci. 82, 93–125 (1999)CrossRefGoogle Scholar
  33. 33.
    Tilton, R.D., Brisson, V.: Self-assembly and two-dimensional patterning of cell arrays by electrophoretic deposition. Biotechnol. Bioeng. 77, 290–295 (2002)PubMedCrossRefGoogle Scholar
  34. 34.
    Ristenpart, W.D., Aksay, I.A., Saville, D.A.: Assembly of colloidal aggregates by electrohydrodynamic flow: kinetic experiments and scaling analysis. Phys. Rev. E. 69, 021405 (2004)CrossRefGoogle Scholar
  35. 35.
    Zhang, K.Q., Liu, X.Y.: In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature 429, 739–743 (2004)PubMedCrossRefGoogle Scholar
  36. 36.
    Fagan, J.A., Sides, P.J., Prieve, D.C.: Vertical motion of a charged colloidal particle near an AC polarized electrode with a nonuniform potential distribution: theory and experimental evidence. Langmuir 20, 4823–4834 (2004)PubMedCrossRefGoogle Scholar
  37. 37.
    Fagan, J.A., Sides, P.J., Prieve, D.C.: Evidence of multiple electrohydrodynamic forces acting on a colloidal particle near an electrode due to an alternating current electric field. Langmuir 21, 1784–1794 (2005)PubMedCrossRefGoogle Scholar
  38. 38.
    Liu, Y., Narayanan, J., Liu, X.Y.: Colloidal phase transition driven by alternating electric field. J. Chem. Phys. 124, 124906 (2006)PubMedCrossRefGoogle Scholar
  39. 39.
    Fagan, J.A., Sides, P.J., Prieve, D.C.: Mechanism of rectified lateral motion of particles near electrodes in alternating electric fields below 1 kHz. Langmuir 22, 9846–9852 (2006)PubMedCrossRefGoogle Scholar
  40. 40.
    Zhou, H., White, L.R., Tilton, R.D.: Microphase separation during binary electrophoretic deposition of particles with dissimilar polarizabilities. Coll. Surf. A. 277, 119–130 (2006)CrossRefGoogle Scholar
  41. 41.
    Santana-Solano, J., Wu, D.T., Marr, D.W.M.: Direct measurement of colloidal particle rotation and field dependence in alternating current electrohydrodynamic flows. Langmuir 22, 5932–5936 (2006)PubMedCrossRefGoogle Scholar
  42. 42.
    Ristenpart, W.D., Aksay, I.A., Saville, D.A.: Electrohydrodynamic flow around a colloidal particle near an electrode with an oscillating potential. J. Fluid. Mech. 575, 83–109 (2007)CrossRefGoogle Scholar
  43. 43.
    Ristenpart, W.D., Aksay, I.A., Saville, D.A.: Electrically driven flow near a colloidal particle close to an electrode with a faradaic current. Langmuir 23, 4071–4080 (2007)PubMedCrossRefGoogle Scholar
  44. 44.
    Hoggard, J.D., Sides, P.J., Prieve, D.C.: Electrolyte-dependent pairwise particle motion near electrodes at frequencies below 1 kHz. Langmuir 23, 6983–6990 (2007)PubMedCrossRefGoogle Scholar
  45. 45.
    Liu, Y., Liu, X.Y., Narayanan, J.: Kinetics and equilibrium distribution of colloidal assembly under an alternating electric field and correlation to degree of perfection of colloidal crystals. J. Phys. Chem. C. 111, 995–998 (2007)CrossRefGoogle Scholar
  46. 46.
    Zhang, K.Q., Liu, X.Y.: Size-dependent planar colloidal crystals guided by alternating electric field. Appl. Phys. Lett. 90, 111911(2007)CrossRefGoogle Scholar
  47. 47.
    Liu, Y., Xie, R.G., Liu, X.Y.: Fine tuning of equilibrium distance of two-dimensional colloidal assembly under an alternating electric field. Appl. Phys. Lett. 91, 063105 (2007)CrossRefGoogle Scholar
  48. 48.
    Hoggard, J.D., Sides, P.J., Prieve, D.C.: Electrolyte-dependent multiparticle motion near electrodes in oscillating electric fields. Langmuir 24, 2977–2982 (2008)PubMedCrossRefGoogle Scholar
  49. 49.
    Xie, R.G., Liu, X.Y.: Epitaxial assembly and ordering of two-dimensional colloidal crystals. Appl. Phys. Lett. 92, 083106 (2008)CrossRefGoogle Scholar
  50. 50.
    Yariv, E.: Electro-hydrodynamic particle levitation on electrodes. J. Fluid. Mech. 645, 187–210 (2010)CrossRefGoogle Scholar
  51. 51.
    O’Brien, R.W., White, L.R.: Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Far. Trans. 2(74), 1607–1626 (1978)CrossRefGoogle Scholar
  52. 52.
    Khair, A.S., Squires, T.E.: The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys. Fluid. 21, 042001 (2009)CrossRefGoogle Scholar
  53. 53.
    Keh, H.J., Lien, L.C.: Electrophoresis of a dielectric sphere normal to a large conducting plane. J. Chin. Inst. Chem. Eng. 20, 283–290 (1989)Google Scholar
  54. 54.
    Brenner, H.: The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16, 242–251 (1961)CrossRefGoogle Scholar
  55. 55.
    Newman, J.: Electrochemical Systems, 3rd. edn. Wiley, Hoboken (2004)Google Scholar
  56. 56.
    Breiter, M., Kleinerman, M., Delahay, P.: Structure of the double layer and electrode processes. J. Am. Chem. Soc. 80, 5111–5117 (1958)CrossRefGoogle Scholar
  57. 57.
    Hu, K., Fan, F.-R.F., Bard, A.J., Hillier, A.C.: Direct measurement of diffuse double-layer forces at the semiconductor/electrolyte interface using an atomic force microscope. J. Phys. Chem. B. 101, 8298–8303 (1997)CrossRefGoogle Scholar
  58. 58.
    Hollingsworth, A.D., Saville, D.A.: A broad frequency range dielectric spectrometer for colloidal suspensions: cell design, calibration, and validation. J. Coll. Interface Sci. 257, 65–76 (2003)CrossRefGoogle Scholar
  59. 59.
    O’Konski, C.: Electric properties of macromolecules. V. Theory of ionic polarization in polyelectrolytes. J. Phys. Chem. 64, 605–619 (1960)CrossRefGoogle Scholar
  60. 60.
    Green, N.G., Morgan, H.: Dielectrophoresis of submicrometer latex spheres. 1. Experimental results. J. Phys. Chem. B. 103, 41–50 (1999)CrossRefGoogle Scholar
  61. 61.
    Saville, D.A., Bellini, T., Degiorgio, V., Mantegazza, F.: An extended Maxwell–Wagner theory for the electric birefringence of charged colloids. J. Chem. Phys. 113, 6974–6983 (2000)CrossRefGoogle Scholar
  62. 62.
    Zhou, H., Preston, M.A., Tilton, R.D., White, L.R.: Calculation of the electric polarizability of a charged spherical dielectric particle by the theory of colloidal electrokinetics J. Coll. Interface Sci. 285, 845–856 (2005)CrossRefGoogle Scholar
  63. 63.
    Bahaj, A.S., Bailey, A.G.: Dielectrophoresis of small particles. Proc. IEEE/IAS Annual Meeting Cleveland OH October:154–157 (1979)Google Scholar
  64. 64.
    Green, N.G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A.: Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys. Rev. E. 61, 4011–4018 (2000)CrossRefGoogle Scholar
  65. 65.
    Gonzalez, A., Ramos, A., Green, N.G., Castellanos, A., Morgan, H.: Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys. Rev. E. 61, 4019–4028 (2000)CrossRefGoogle Scholar
  66. 66.
    Green, N.G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A.: Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys. Rev. E. 66, 026305 (2002)CrossRefGoogle Scholar
  67. 67.
    Castellanos, A., Ramos, A., Gonzalez, A., Green, N.G., Morgan, H.: Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J. Phys. D: Appl. Phys. 36, 2584–2597 (2003)CrossRefGoogle Scholar
  68. 68.
    Bazant, M.Z., Squires, T.M.: Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92, 066101 (2004)PubMedCrossRefGoogle Scholar
  69. 69.
    Squires, T.M., Bazant, M.Z.: Induced-charge electro-osmosis. J. Fluid. Mech. 509, 217–252 (2004)CrossRefGoogle Scholar
  70. 70.
    Duval, J., Lyklema, J., Kleijn, J.M., van Leeuwen, H.P.: Amphifunctionally electrified interfaces: coupling of electronic and ionic surface-charging processes. Langmuir 17, 7573–7581 (2001)CrossRefGoogle Scholar
  71. 71.
    Duval, J.F.L., Huijs, G.K., Threels, W.F., Lyklema, J., van Leeuwen, H.P.: Faradaic depolarization in the electrokinetics of the metal-electrolyte solution interface. J. Coll. Interface Sci. 260(95–106), 1318 (2003)Google Scholar
  72. 72.
    Duval, J.F.L.: Electrokinetics of the amphifunctional metal/electrolyte solution interface in the presence of a redox couple. J. Coll. Interface Sci. 269(211–223), 1321 (2004)Google Scholar
  73. 73.
    Prieve, D.C.: Changes in zeta potential caused by a DC electric current for thin double layers. Coll. Surf. A. 250, 67–77 (2004)CrossRefGoogle Scholar
  74. 74.
    Delgado, A.V., Gonzalez-Caballero, F., Hunter, R.J., Koopal, L.K., Lyklema, J.: Measurement and interpretation of electrokinetic phenomena. J. Coll. Interface Sci. 309, 194–224 (2007)CrossRefGoogle Scholar
  75. 75.
    Squires, T.M.: Induced-charge electrokinetics: fundamental challenges and opportunities. Lab. Chip. 9, 2477–2483 (2009)PubMedCrossRefGoogle Scholar
  76. 76.
    Bhatt, K.H., Velev, O.D.: Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir 20, 467–476 (2004)PubMedCrossRefGoogle Scholar
  77. 77.
    Gupta, S., Alargova, R.G., Kilpatrick, P.K., Velev, O.D.: On-chip dielectrophoretic coassembly of live cells and particles into responsive biomaterials. Langmuir 26, 3441–3452 (2010)PubMedCrossRefGoogle Scholar
  78. 78.
    Lumsdon, S.O., Kaler, E.W., Williams, J.P., Velev, O.D.: Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals. Appl. Phys. Lett. 82, 949–951 (2003)CrossRefGoogle Scholar
  79. 79.
    Bhatt, K.H., Sonia Grego, S., Velev, O.D.: An AC electrokinetic technique for collection and concentration of particles and cells on electrodes. Langmuir 21, 6603–6612 (2005)PubMedCrossRefGoogle Scholar
  80. 80.
    Ristenpart, W.D., Aksay, I.A., Saville, D.A.: Electrically guided assembly of planar superlattices in binary colloidal suspensions. Phys. Rev. Lett. 90, 128303 (2003)PubMedCrossRefGoogle Scholar
  81. 81.
    Zhou, H., White, L.R., Tilton, R.D.: Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis. J. Coll. Interface Sci. 285, 179–191 (2005)CrossRefGoogle Scholar
  82. 82.
    Sides, P.J., Wirth, C.L., Prieve, D.C.: An imaging ammeter for electrochemical measurements. Patent Pending (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Paul J. Sides
    • 1
  • Christopher L. Wirth
    • 1
  • Dennis C. Prieve
    • 1
  1. 1.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations