Runtime Optimization of Force Based Models within the Hermes Project

  • A. Seyfried
  • M. Chraibi
  • U. Kemloh
  • J. Mehlich
  • A. Schadschneider
Conference paper


The aim of the Hermes project is the development of an evacuation assistant to support security services in case of emergency in complex buildings and thus to improve safety at mass events. One goal of the project is to build models for pedestrian dynamics specifically designed for forecasting the emergency egress of large crowds faster than real-time using methods applied in high performance computing. We give an overview of the project and the modeling approaches used focusing on the runtime optimization and parallelization concepts.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hermes – Investigation of an evacuation assistant for use in emergencies during large-scale public events. Juliche Supercomputing Centre (JSC).
  2. 2.
    Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: Empirical results, modeling and applications. In: Meyers, R.A. (ed.), Encyclopedia of Complexity and System Science, pp. 3142. Springer (2009)Google Scholar
  3. 3.
    Rogsch, C., Seyfried, A., Klingsch, W.: Comparative Investigations of the Dynamical Simulation of Foot Traffic Flow. In: Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M. (ed.), Pedestrian and Evacuation Dynamics 2005, p.357-362. Springer, Berlin (2006)Google Scholar
  4. 4.
    Schadschneider, A., Seyfried, A.: Empirical Results for Pedestrian Dynamics and their Implications for Cellular Automata Models. In: Timmermans, H. (ed.), Pedestrian Behavior: Data Collection and Applications, p. 27-43. Emerald Group Publishing Limited (2009)Google Scholar
  5. 5.
    Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A. 295, 507-525 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Schadschneider, A.: Cellular automaton approach to pedestrian dynamics- Theory. In: Schreckenberg, M., Sharma, S.D. (Eds.), Pedestrian and Evacuation Dynamics, pp. 75. Springer (2002)Google Scholar
  7. 7.
    Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior: Comparison with aircraft evacuation data. Physica A. 324, pp. 689 (2003)MATHCrossRefGoogle Scholar
  8. 8.
    Schadschneider, A., et al.: Runtime Optimization of Force Based Models within the Hermes Project (2010)Google Scholar
  9. 9.
    Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J. Stat. Mech. P10011 (2004)Google Scholar
  10. 10.
    Chraibi, M., Seyfried, A., Schadschneider, A., Mackens, M.: Quantitative verification of a force based model for pedestrian dynamics. To appear in Traffic and Granular Flow 2009 (2010)
  11. 11.
    Mori, M., Tsukaguchi, H.: A new method for evaluation of level of service in pedestrian facilities. Transp. Res. 21A(3), 223–234 (1987)Google Scholar
  12. 12.
    Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of Crowd Disasters: An Empirical Study. Phys. Rev. E. 75, 046109 (2007)CrossRefGoogle Scholar
  13. 13.
    Oeding, D.: Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fußgängerverkehrs. Forschungsbericht 22, Technische Hochschule Braunschweig (1963)Google Scholar
  14. 14.
    Hankin, B.D., Wright, R.A.: Passenger Flow in Subways. Operational Research Quarterly. 9, 81–88 (1958)CrossRefGoogle Scholar
  15. 15.
    Seyfried, A., Rupprecht, T., Passon, O., Steffen, B., Klingsch, W., Boltes, M.: New insights into pedestrian flow through bottlenecks. Transportation Science. 43, 395-406 (2009)CrossRefGoogle Scholar
  16. 16.
    Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. J. Stat. Mech. 10, P10014 (2006)CrossRefGoogle Scholar
  17. 17.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford Science Publications, Oxford (1987)MATHGoogle Scholar
  18. 18.
    Sutmann, G., Stegailov, V.: Optimization of neighbor list techniques in liquid matter simulations. Journal of Molecular Liquids, Complex Liquids – Fundamental Properties to Industrial Applications. Volume 125, Issues 2-3, 15, 197-203 (2006)Google Scholar
  19. 19.
    Verlet, L.: Computer experiments on classical fluids, I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. E. 159, 98 (1967)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Reynolds, C.: Big fast crowds on PS3. Proc. 2006 ACM SIGGRAPH symposium on Videogames, p. 113-121. Boston (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Seyfried
    • 1
  • M. Chraibi
    • 1
  • U. Kemloh
    • 1
  • J. Mehlich
    • 1
  • A. Schadschneider
    • 2
  1. 1.Jülich Supercomputing CentreForschungszentrum Jülich GmbHJülichGermany
  2. 2.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations