Advertisement

Aspects of Cadmium Neurotoxicity

  • Haris CarageorgiouEmail author
  • Myrto Katramadou
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

Occupational and environmental exposure to Cd leads to a progressive and almost irreversible accumulation of the metal in the body determined by various host factors such as Cd body burden, age, gender, body status of vitamins, and essential elements. Cadmium absorption rate is increasing by low Fe, Zn, and Ca levels. Metallothioneins play a critical role in the protection of human health from Cd toxic effects. Today besides many organs toxicity and carcinogenicity, Cd is considered also as a neurotoxin. Although Cd does not easily penetrate BBB barriers in adults, this heavy metal can disturb CNS function either via alterations in the trace elements brain contents or/and via disturbances of crucial brain enzymes interfering in neurotransmitters release and neurotransmission. Chronic low level to Cd exposure in developing organisms may cause serious behavioral problems in later life. Experimental in vitro and in vivo data refer to effects of Cd on the hypothalamus–pituitary axis at different levels which may lead to disorders of the endocrine and/or immune system. In conclusion, Cd-induced brain dysfunction may be related to disruption of metal ion homeostasis, reduction of the total brain antioxidant status, inhibition of oxidative DNA repair systems, alteration in signal transduction, stimulation in the production of ROS, which may act as signaling molecules in the induction of gene expression and apoptosis. Antioxidants to some extent may protect the brain from Cd oxidative stress.

Keywords

Neurotoxicity Stroke Ischemia Calcium Cadmium Neurotransmitter ROS Oxidative stress 

References

  1. Abdel-Majid RM, Leong WL, Schalkwyk LC, Smallman DS, Wong ST, Storm DR, Fine A, Dobson MJ, Guernsey DL, Neumann PE (1998) Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nat Genet 19(3):289–291PubMedGoogle Scholar
  2. Ali MM, Mathur N, Chandra SV (1990) Effect of chronic cadmium exposure on locomotor behaviour of rats. Indian J Exp Biol 28(7):653–656PubMedGoogle Scholar
  3. Alshuaib WB, Cherian SP, Hasan MY, Fahim MA (2003) Drug effects on calcium homeostasis in mouse CA1 hippocampal neurons. Int J Neurosci 10:1317–1332Google Scholar
  4. Amara S, Douki T, Garrel C, Favier A, Ben Rhouma K, Sakly M, Abdelmelek H (2011) Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus. Toxicol Ind Health 27(2):99–106PubMedGoogle Scholar
  5. Anderson JM, Van Itallie CM (1995) Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 69:G467–G475, ReviewGoogle Scholar
  6. Andersson H, Petersson-Grawe K, Lindqvist E, Luthman J, Oskarsson A, Olson L (1997) Low level cadmium exposure of lactating rats causes alterations in brain serotonin levels in the offspring. Neurotoxicol Teratol 19:105–115PubMedGoogle Scholar
  7. Anke M, Muller R, Dorn W, Seifert M, Muller M, Gonzales D, Kronemann H, Schäfer U (2000) Toxicity and essentiality of cadmium. In: Ermidou-Pollet S, Pollet S (eds) Proceedings of the 2nd international symposium on trace elements in human: new perspectives, Athens, 7–9 Oct 1999, pp 343–363Google Scholar
  8. Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D’Alessio A, Sirabella R, Secondo A, Sibaud L, Di Renzo GF (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 139(2–3):125–133, ReviewPubMedGoogle Scholar
  9. Antonio MT, Benito MJ, Leret ML, Corpas I (1998) Gestational administration of cadmium alters the neurotransmitter levels in newborn rat brains. J Appl Toxicol 18(2):83–88PubMedGoogle Scholar
  10. Antonio MT, López N, Leret ML (2002) Pb and Cd poisoning during development alters cerebellar and striatal function in rats. Toxicology 176(1–2):59–66PubMedGoogle Scholar
  11. Antonio MT, Corredor L, Leret ML (2003) Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett 143(3):331–340PubMedGoogle Scholar
  12. Apostoli P, Catalani S (2011) Metal ions affecting reproduction and development. Met Ions Life Sci 8:263–303PubMedGoogle Scholar
  13. Arito H, Sudo A, Suzuki Y (1981) Aggressive behavior of the rat induced by repeated administration of cadmium. Toxicol Lett 7(6):457–461PubMedGoogle Scholar
  14. Arvidson B (1986) Autoradiographic localization of cadmium in the rat brain. Neurotoxicology 7(3):89–96PubMedGoogle Scholar
  15. Arvidson B, Tjälve H (1986) Distribution of 109Cd in the nervous system of rats after intravenous injection. Acta Neuropathol 69(1–2):111–116PubMedGoogle Scholar
  16. Aschner M (1997) Astrocyte metallothioneins (MTs) and their neuroprotective role. Ann N Y Acad Sci 825:334–347, ReviewPubMedGoogle Scholar
  17. Aschner M, West AK (2005) The role of MT in neurological disorders. J Alzheimers Dis 8(2):139–145, discussion 209–215PubMedGoogle Scholar
  18. Aschner M, Cherian MG, Klaassen CD, Palmiter RD, Erickson JC, Bush AI (1997) Metallothioneins in brain – the role in physiology and pathology. Toxicol Appl Pharmacol 142(2):229–242, ReviewPubMedGoogle Scholar
  19. ATSDR (1999) Toxicological profile for cadmium (final report). NTIS Accession No PB99-166621. Agency for Toxic Substances and Disease Registry, Atlanta, GA, pp 450Google Scholar
  20. Auld DS, Mennicken F, Quirion R (2001) Nerve growth factor rapidly induces prolonged acetylcholine release from cultured basal forebrain neurons: differentiation between neuromodulatory and neurotrophic influences. J Neurosci 21(10):3375–3382PubMedGoogle Scholar
  21. Badisa VL, Latinwo LM, Odewumi CO, Ikediobi CO, Badisa RB, Ayuk-Takem LT, Nwoga J, West J (2007) Mechanism of DNA damage by cadmium and interplay of antioxidant enzymes and agents. Environ Toxicol 22(2):144–151PubMedGoogle Scholar
  22. Baker TK, VanVooren HB, Smith WC, Carfagna MA (2003) Involvement of calcium channels in the sexual dimorphism of cadmium-induced hepatotoxicity. Toxicol Lett 137(3):185–192PubMedGoogle Scholar
  23. Bar-Sela S, Reingold S, Richter ED (2001) Amyotrophic lateral sclerosis in a battery-factory worker exposed to cadmium. Int J Occup Environ Health 7(2):109–112PubMedGoogle Scholar
  24. Benitez MA, Mendez-Armenta M, Montes S, Rembao D, Sanin LH, Rios C (2009) Mother-fetus transference of lead and cadmium in rats: involvement of metallothionein. Histol Histopathol 24(12):1523–1530PubMedGoogle Scholar
  25. Benters J, Flögel U, Schäfer T, Leibfritz D, Hechtenberg S, Beyersmann D (1997) Study of the interactions of cadmium and zinc ions with cellular calcium homoeostasis using 19F-NMR spectroscopy. Biochem J 322(Pt 3):793–799PubMedGoogle Scholar
  26. Berglund M, Akesson A, Nermell B, Vahter M (1994) Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake. Environ Health Perspect 102(12):1058–1066PubMedGoogle Scholar
  27. Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88(11):1549–1559PubMedGoogle Scholar
  28. Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144(2):247–261PubMedGoogle Scholar
  29. Biekofsky RR, Martin SR, Browne JP, Bayley PM, Feeney J (1998) Ca2+ coordination to backbone carbonyl oxygen atoms in calmodulin and other EF-hand proteins: 15N chemical shifts as probes for monitoring individual-site Ca2+ coordination. Biochemistry 37(20):7617–7629PubMedGoogle Scholar
  30. Bondier JR, Michel G, Propper A, Badot PM (2008) Harmful effects of cadmium on olfactory system in mice. Inhal Toxicol 20(13):11Google Scholar
  31. Bourre JM (2006) Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 2: macronutrients. J Nutr Health Aging 10(5):386–399, ReviewPubMedGoogle Scholar
  32. Bressler JP, Olivi L, Cheong JH, Kim Y, Maerten A, Bannon D (2007) Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities. Hum Exp Toxicol 26(3):221–229, ReviewPubMedGoogle Scholar
  33. Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204(3):274–308, ReviewPubMedGoogle Scholar
  34. Brus R, Kostrzewa RM, Felińska W, Plech A, Szkilnik R, Frydrych J (1995) Ethanol inhibits cadmium accumulation in brains of offspring of pregnant rats that consume cadmium. Toxicol Lett 76(1):57–62PubMedGoogle Scholar
  35. Brzóska MM, Moniuszko-Jakoniuk J, Jurczuk M, Gałazyn-Sidorczuk M (2002) Cadmium turnover and changes of zinc and copper body status of rats continuously exposed to cadmium and ethanol. Alcohol Alcohol 37(3):213–221PubMedGoogle Scholar
  36. Burton GW, Ingold KU (1989) Vitamin E as an in vitro and in vivo antioxidant. Ann N Y Acad Sci 570:7–22, ReviewPubMedGoogle Scholar
  37. Calabrese V, Bates TE, Stella AMG (2000) NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem Res 25:1315–1341PubMedGoogle Scholar
  38. Calevro F, Beyersmann D, Hartwig A (1998) Effect of cadmium (II) on the extent of oxidative DNA damage in primary brain cell cultures from Pleurodeles larvae. Toxicol Lett 94(3):217–225PubMedGoogle Scholar
  39. Carageorgiou H, Boviatsis St,Carageorgiou-Kassaveti M, Pantos C, Messari I, Papadopoulou-Daifoti Z (2000) Dopamine, 5-HT and their metabolite levels in certain rat brain areas after acute and chronic administration of Cd++. In: Ermidou-Pollet S, Pollet S (eds) Proceedings of the 2nd international symposium on trace elements in human: new perspectives, Athens, 7–9 Oct 1999, pp 723–730Google Scholar
  40. Carageorgiou H, Tzotzes V, Pantos C, Mourouzis C, Zarros A, Tsakiris S (2004) In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase (Na+, K+)-ATPase andMg2+-ATPase activities: protection by l-cysteine. Basic Clin Pharmacol Toxicol 94:112–118PubMedGoogle Scholar
  41. Carageorgiou H, Tzotzes V, Sideris A, Zarros A, Tsakiris S (2005) Cadmium effects on brain acetylcholinesterase activity and antioxidant status of adult rats: modulation by zinc, calcium and l-cysteine co-administration. Basic Clin Pharmacol Toxicol 97:320–324PubMedGoogle Scholar
  42. Caride A, Fernández-Pérez B, Cabaleiroa T, Esquifino AI, Lafuente A (2009) Cadmium exposure disrupts GABA and taurine regulation of prolactin secretion in adult male rats. Toxicol Lett 185(3):175–179PubMedGoogle Scholar
  43. Caride A, Fernández-Pérez B, Cabaleiro T, Tarasco M, Esquifino AI, Lafuente A (2010a) Cadmium chronotoxicity at pituitary level: effects on plasma ACTH, GH, and TSH daily pattern. J Physiol Biochem 66(3):213–220PubMedGoogle Scholar
  44. Caride A, Fernández-Pérez B, Cabaleiro T, Bernárdez G, Lafuente A (2010b) Cadmium chloride exposure modifies amino acid daily pattern in the mediobasal hypothalamus in adult male rat. J Appl Toxicol 30(1):84–90PubMedGoogle Scholar
  45. Caride A, Fernández Pérez B, Cabaleiro T, Lafuente A (2010c) Daily pattern of pituitary glutamine, glutamate, and aspartate content disrupted by cadmium exposure. Amino Acids 38(4):1165–1172PubMedGoogle Scholar
  46. Casali TA, Gomez RS, Moraes-Santos T, Gomez MV (1995) Differential effects of calcium channel antagonists on tityustoxin and ouabain-induced release of [3H] acetylcholine from brain cortical slices. Neuropharmacology 34(6):599–603PubMedGoogle Scholar
  47. Chandra SV, Kalia K, Hussain T (1985) Biogenic amines and some metals in brain of cadmium-exposed diabetic rats. J Appl Toxicol 5(6):378–381PubMedGoogle Scholar
  48. Chao SH, Bu CH, Cheung WY (1995) Stimulation of myosin light-chain kinase by Cd2+ and Pb2+. Arch Toxicol 69(3):197–203PubMedGoogle Scholar
  49. Chen L, Liu L, Huang S (2008a) Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med 45:1035–1044PubMedGoogle Scholar
  50. Chen L, Liu L, Luo Y, Huang S (2008b) MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis. J Neurochem 105(1):251–261PubMedGoogle Scholar
  51. Chen L, Xu B, Liu L, Luo Y, Zhou H, Chen W, Shen T, Han X, Kontos CD, Huang S (2011) Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radic Biol Med 50(5):624–632PubMedGoogle Scholar
  52. Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23(4):1974–1980PubMedGoogle Scholar
  53. Chow RH (1991) Cadmium block of squid calcium currents. Macroscopic data and a kinetic model. J Gen Physiol 98(4):751–770PubMedGoogle Scholar
  54. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058PubMedGoogle Scholar
  55. Clark DE, Nation JR, Bourgeois AJ, Hare MF, Baker DM, Hinderberger EJ (1985) The regional distribution of cadmium in the brains of orally exposed adult rats. Neurotoxicology 6(3):109–114PubMedGoogle Scholar
  56. Clarkson TW (1993) Molecular and ionic mimicry of toxic metals. Annu Rev Pharmacol Toxicol 33:545–571, ReviewPubMedGoogle Scholar
  57. Cobb A (2007) Cadmium: the elements. Marshall Cavendish, TarrytownGoogle Scholar
  58. Colwell CS, Levine MS (1999) Metabotropic glutamate receptor modulation of excitotoxicity in the neostriatum: role of calcium channels. Brain Res 833(2):234–241PubMedGoogle Scholar
  59. Cooper GP, Suzuki JB, Manalis RS (1984) Heavy metals: effects on synaptic transmission. Neurotoxicology 5(3):247–266PubMedGoogle Scholar
  60. Crews HM, Owen LM, Langford N, Fairweather-Tait SJ, Fox TE, Hubbard L, Phillips D (2000) Use of the stable isotope (106) Cd for studying dietary cadmium absorption in humans. Toxicol Lett 112–113:201–207PubMedGoogle Scholar
  61. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940, ReviewPubMedGoogle Scholar
  62. Dalton TP, He L, Wang B, Miller ML, Jin L, Stringer KF, Chang X, Baxter CS, Nebert DW (2005) Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. Proc Natl Acad Sci USA 102(9):3401–3406PubMedGoogle Scholar
  63. Das KP, Das PC, Dasgupta S, Dey CD (1993) Serotonergic-cholinergic neurotransmitters’ function in brain during cadmium exposure in protein restricted rat. Biol Trace Elem Res 36(2):119–127PubMedGoogle Scholar
  64. Davson H, Segal MB (eds) (1996) Physiology of the CSF and blood–brain barriers. CRC, New YokGoogle Scholar
  65. Dési I, Nagymajtényi L, Schulz H (1998) Behavioural and neurotoxicological changes caused by cadmium treatment of rats during development. J Appl Toxicol 18(1):63–70PubMedGoogle Scholar
  66. Diamond GL, Goodrum PE, Felter SP, Ruoff WL (1998) Gastrointestinal absorption of metals. Drug Chem Toxicol 21(2):223–251PubMedGoogle Scholar
  67. Díaz D, Bartolo R, Delgadillo DM, Higueldo F, Gomora JC (2005) Contrasting effects of Cd2+ and Co2+ on the blocking/unblocking of human Cav3 channels. J Membr Biol 207(2):91–105PubMedGoogle Scholar
  68. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671PubMedGoogle Scholar
  69. Elinder F, Arhem P (2003) Metal ion effects on ion channel gating. Q Rev Biophys 36(4):373–427PubMedGoogle Scholar
  70. El-Missiry MA, Shalaby F (2000) Role of beta-carotene in ameliorating the cadmium-induced oxidative stress in rat brain and testis. J Biochem Mol Toxicol 14(5):238–243PubMedGoogle Scholar
  71. Esquifino AI, Seara R, Fernández-Rey E, Lafuente A (2001) Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats. Arch Toxicol 75(3):127–133PubMedGoogle Scholar
  72. Evans J, Hastings L (1992) Accumulation of Cd (II) in the CNS depending on the route of administration: intraperitoneal, intratracheal, or intranasal. Fundam Appl Toxicol 19(2):275–278PubMedGoogle Scholar
  73. Eybl V, Kotyzova D, Koutensky J (2006) Comparative study of natural antioxidants – curcumin, resveratrol and melatonin – in cadmium-induced oxidative damage in mice. Toxicology 225(2–3):150–156PubMedGoogle Scholar
  74. Fassio A, Sala R, Bonanno G, Marchi M, Raiteri M (1999) Evidence for calcium-dependent vesicular transmitter release insensitive to tetanus toxin and botulinum toxin type F. Neuroscience 90(3):893–902PubMedGoogle Scholar
  75. Fasitsas CD, Theocharis SE, Zoulas D, Chrissimou S, Deliconstantinos G (1991) Time-dependent cadmium-neurotoxicity in rat brain synaptosomal plasma membranes. Comp Biochem Physiol C 100:271–275PubMedGoogle Scholar
  76. Fern R, Black JA, Ransom BR, Waxman SG (1996) Cd (2+)-induced injury in CNS white matter. J Neurophysiol 76(5):3264–3273PubMedGoogle Scholar
  77. Fernández-Pérez B, Caride A, Cabaleiro T, Lafuente A (2010) Cadmium effects on 24 h changes in glutamate, aspartate, glutamine, GABA and taurine content of rat striatum. J Trace Elem Med Biol 24(3):212–218PubMedGoogle Scholar
  78. Figueiredo-Pereira ME, Yakushin S, Cohen G (1998) Disruption of the intracellular sulfhydryl homeostasis by cadmium-induced oxidative stress leads to protein thiolation and ubiquitination in neuronal. J Biol Chem 273(21):12703–12709PubMedGoogle Scholar
  79. Filipic M, Fatur T, Vudrag M (2006) Molecular mechanisms of cadmium induced mutagenicity. Hum Exp Toxicol 25(2):67–77, ReviewPubMedGoogle Scholar
  80. Finnie JW, Blumbergs PC, Cai Z, Manavis J, Kuchel TR (2006) Neonatal mouse brain exposure to mobile telephony and effect on blood-brain barrier permeability. Pathology 38(3):262–263PubMedGoogle Scholar
  81. Flanagan PR, McLellan JS, Haist J, Cherian G, Chamberlain MJ, Valberg LS (1978) Increased dietary cadmium absorption in mice and human subjects with iron deficiency. Gastroenterology 74:841–846PubMedGoogle Scholar
  82. Flora SJ (2007) Role of free radicals and antioxidants in health and disease. Cell Mol Biol (Noisy-le-grand) 53(1):1–2Google Scholar
  83. Flora SO, Tandon SK (1987) Effect of combined exposure to cadmium and ethanol on regional brain biogenic amine levels in the rat. Biochem Int 15(4):863–871PubMedGoogle Scholar
  84. Friedman PA, Gesek FA (1994) Cadmium uptake by kidney distal convoluted tubule cells. Toxicol Appl Pharmacol 128(2):257–263PubMedGoogle Scholar
  85. Fullmer CS (1990) Intestinal lead and calcium absorption: effect of 1, 25-dihydroxy cholecalciferol and lead status. Proc Soc Exp Biol Med 194(3):258–264PubMedGoogle Scholar
  86. Fullmer CS, Rosen JF (1990) Effect of dietary calcium and lead status on intestinal calcium absorption. Environ Res 51(1):91–99PubMedGoogle Scholar
  87. Gabbiani G, Gregory A, Baic D (1967a) Cadmium-induced selective lesions of sensory ganglia. Neuropathol Exp Neurol 26(3):498–506Google Scholar
  88. Gabbiani G, Baic D, Déziel C (1967b) Toxicity of cadmium for the central nervous system. Exp Neurol 18(2):154–160PubMedGoogle Scholar
  89. Galan A, Garcia-Bermejo L, Troyano A, Vilaboa NE, Fernandez C, de Blas E, Aller P (2001) The role of intracellular oxidation in death induction (apoptosis and necrosis) in human promonocytic cells treated with stress inducers (cadmium, heat, X-rays). Eur J Cell Biol 80:312–320PubMedGoogle Scholar
  90. Gale TF, Layton WM (1980) The susceptibility of inbred strains of hamsters to cadmium-induced embryotoxicity. Teratology 21(2):181PubMedGoogle Scholar
  91. Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD (1996) Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience 75(4):1271–1288PubMedGoogle Scholar
  92. Ghersi-Egea JF, Strazielle N (2001) Brain drug delivery, drug metabolism, and multidrug resistance at the choroid plexus. Microsc Res Tech 52(1):83–88, ReviewPubMedGoogle Scholar
  93. Ghersi-Egea JF, Strazielle N (2002) Choroid plexus transporters for drugs and other xenobiotics. J Drug Target 10(4):353–357, ReviewPubMedGoogle Scholar
  94. Ghersi-Egea JF, Strazielle N, Murat A, Edwards J, Belin MF (2001) Are blood-brain interfaces efficient in protecting the brain from reactive molecules? Adv Exp Med Biol 500:359–364, ReviewPubMedGoogle Scholar
  95. Gottofrey J, Tjälve H (1991) Axonal transport of cadmium in the olfactory nerve of the pike. Pharmacol Toxicol 69(4):242–252PubMedGoogle Scholar
  96. Green RD, Reed CJ (1998) Mitochondria and apoptosis. Science 281:1309–1312PubMedGoogle Scholar
  97. Gu C, Chen S, Xu X, Zheng L, Li Y, Wu K, Liu J, Qi Z, Han D, Chen G, Huo X (2009) Lead and cadmium synergistically enhance the expression of divalent metal transporter 1 protein in central nervous system of developing rats. Neurochem Res 34(6):1150–1156PubMedGoogle Scholar
  98. Guan YY, Quastel DM, Saint DA (1987) Multiple actions of cadmium on transmitter release at the mouse neuromuscular junction. Can J Physiol Pharmacol 65(10):2131–2136PubMedGoogle Scholar
  99. Guan YY, Quastel DM, Saint DA (1988) Single Ca2+ entry and transmitter release systems at the neuromuscular synapse. Synapse 2(5):558–564PubMedGoogle Scholar
  100. Guerri C (2002) Mechanisms involved in central nervous system dysfunctions induced by prenatal ethanol exposure. Neurotox Res 4(4):327–335PubMedGoogle Scholar
  101. Guerri C, Pascual M, Renau-Piqueras J (2001) Glia and fetal alcohol syndrome. Neurotoxicology 22(5):593–599, ReviewPubMedGoogle Scholar
  102. Gupta A, Chandra SV (1991) Gestational cadmium exposure and brain development: a biochemical study. Ind Health 29(2):65–71PubMedGoogle Scholar
  103. Gupta A, Murthy RC, Chandra SV (1993) Neurochemical changes in developing rat brain after pre- and postnatal cadmium exposure. Bull Environ Contam Toxicol 51(1):12–17PubMedGoogle Scholar
  104. Gupta A, Murthy RC, Thakur SR, Dubey MP, Chandra SV (1990) Comparative neurotoxicity of cadmium in growing and adult rats after repeated administration. Biochem Int 21(1):97–105PubMedGoogle Scholar
  105. Gupta A, Shukla GS (1996) Ontogenic profile of brain lipids following perinatal exposure to cadmium. J Appl Toxicol 16(3):227–233PubMedGoogle Scholar
  106. Gutiérrez-Reyes EY, Albores A, Ríos C (1998) Increase of striatal dopamine release by cadmium in nursing rats and its prevention by dexamethasone-induced metallothionein. Toxicology 131(2–3):145–154PubMedGoogle Scholar
  107. Haage D, Karlsson U, Johansson S (1998) Heterogeneous presynaptic Ca2+ channel types triggering GABA release onto medial preoptic neurons from rat. J Physiol 507(Pt 1):77–91PubMedGoogle Scholar
  108. Hagino N (1957) A study on the cause of itai-itai disease. J Toyama Med Ass 7 (in Japanese)Google Scholar
  109. Hamann I, König C, Richter C, Jahnke G, Hartwig A (2011) Impact of cadmium on hOGG1 and APE1 as a function of the cellular p53 status. Mutat Res [Epub ahead of print]Google Scholar
  110. Harsing LG Jr, Sershen H, Vizi SE, Lajtha A (1992) N-type calcium channels are involved in the dopamine releasing effect of nicotine. Neurochem Res 17(7):729–734PubMedGoogle Scholar
  111. Hart RP, Rose CS, Hamer RM (1989) Neuropsychological effects of occupational exposure to cadmium. J Clin Exp Neuropsychol 11(6):933–943PubMedGoogle Scholar
  112. Hart BA, Lee CH, Shukla GS, Shukla A, Osier M, Eneman JD, Chiu JF (1999) Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress. Toxicology 133(1):43–58PubMedGoogle Scholar
  113. Hartwig A (1995) Current aspects in metal genotoxicity. Biometals 8(1):3–11, ReviewPubMedGoogle Scholar
  114. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Bürkle A (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect 110(Suppl 5):797–799, ReviewPubMedGoogle Scholar
  115. Hastings L, Evans JE (1991) Olfactory primary neurons as a route of entry for toxic agents into the CNS. Neurotoxicology 12(4):707–714PubMedGoogle Scholar
  116. He L, Wang B, Hay EB, Nebert DW (2009) Discovery of ZIP transporters that participate in cadmium damage to testis and kidney. Toxicol Appl Pharmacol 238(3):250–257PubMedGoogle Scholar
  117. Hinkle PM, Kinsella PA, Osterhoudt KC (1987) Cadmium uptake and toxicity via voltage-sensitive calcium channels. J Biol Chem 262(34):16333–16337PubMedGoogle Scholar
  118. Hobson M, Milhouse M, Rajanna B (1986) Effects of cadmium on the uptake of dopamine and norepinephrine in rat brain synaptosomes. Bull Environ Contam Toxicol 37(3):421–426PubMedGoogle Scholar
  119. Horiguchi H, Oguma E, Sasaki S, Miyamoto K, Ikeda Y, Machida M, Kayama F (2004) Comprehensive study of the effects of age, iron deficiency, diabetes mellitus, and cadmium burden on dietary cadmium absorption in cadmium-exposed female Japanese farmers. Toxicol Appl Pharmacol 196(1):114–123PubMedGoogle Scholar
  120. Horiguchi H, Aoshima K, Oguma E, Sasaki S, Miyamoto K, Hosoi Y, Katoh T, Kayama F (2010) Latest status of cadmium accumulation and its effects on kidneys, bone, and erythropoiesis in inhabitants of the formerly cadmium-polluted Jinzu River Basin in Toyama, Japan, after restoration of rice paddies. Int Arch Occup Environ Health 83(8):953–970PubMedGoogle Scholar
  121. Horváth E, Oszlánczi G, Máté Z, Szabó A, Kozma G, Sápi A, Kónya Z, Paulik E, Nagymajtényi L, Papp A (2011) Nervous system effects of dissolved and nanoparticulate cadmium in rats in subacute exposure. J Appl Toxicol, 10.1002/jat.1664Google Scholar
  122. Hrdina PD, Peters DA, Singhal RL (1976) Effects of chronic exposure to cadmium, lead and mercury of brain biogenic amines in the rat. Res Commun Chem Pathol Pharmacol 15(3):483–493PubMedGoogle Scholar
  123. Huang YH, Shih CM, Huang CJ, Lin CM, Chou CM, Tsai ML, Liu TP, Chiu JF, Chen CT (2006) Effects of cadmium on structure and enzymatic activity of Cu, Zn-SOD and oxidative status in neural cells. J Cell Biochem 98(3):577–589PubMedGoogle Scholar
  124. Ieiri I, Takane H, Otsubo K (2004) The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet 43(9):553–576, ReviewPubMedGoogle Scholar
  125. Im JY, Paik S-G, Han P-L (2006) Cadmium-induced astroglial death proceeds via glutathione depletion. J Neurosci Res 83:301–308PubMedGoogle Scholar
  126. Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208, ReviewPubMedGoogle Scholar
  127. Jasim S, Tjälve H (1986) Effect of zinc pyridinethione on the tissue disposition of nickel and cadmium in mice. Acta Pharmacol Toxicol (Copenh) 59(3):204–208Google Scholar
  128. Jiang LF, Yao TM, Zhu ZL, Wang C, Ji LN (2007) Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta 1774(11):1414–1421PubMedGoogle Scholar
  129. Jiménez-Ortega V, Cardinali DP, Fernández-Mateos MP, Ríos-Lugo MJ, Scacchi PA, Esquifino AI (2010) Effect of cadmium on 24-hour pattern in expression of redox enzyme and clock genes in rat medial basal hypothalamus. Biometals 23(2):327–337PubMedGoogle Scholar
  130. Jiménez-Ortega V, Cano-Barquilla P, Scacchi PA, Cardinali DP, Esquifino AI (2011) Cadmium-induced disruption in 24-h expression of clock and redox enzyme genes in rat medial basal hypothalamus: prevention by melatonin. Front Neurol 2:13PubMedGoogle Scholar
  131. Jin T, Lu J, Nordberg M (1998) Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology 19(4–5):529–535PubMedGoogle Scholar
  132. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87PubMedGoogle Scholar
  133. Kagi JH, Vallee BL (1960) Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem 235:3460–3465PubMedGoogle Scholar
  134. Kang H, Sun LD, Atkins CM, Soderling TR, Wilson MA, Tonegawa S (2001) An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell 106(6):771–783PubMedGoogle Scholar
  135. Karihtala P, Soini Y (2007) Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS 115(2):81–103PubMedGoogle Scholar
  136. Kass GE, Nicotera P, Orrenius S (1990) Effects of xenobiotics on signal transduction and Ca2+ mediated processes in mammalian cells. Princess Takamatsu Symp 21:213–226PubMedGoogle Scholar
  137. Kazantzis G (2004) Cadmium, osteoporosis and calcium metabolism. Biometals 5:493–498Google Scholar
  138. Kilburn KH, McKinley KL (1996) Persistent neurotoxicity from a battery fire: is cadmium the culprit? South Med J 89(7):693–698PubMedGoogle Scholar
  139. Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR (1998) The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101(2):289–294PubMedGoogle Scholar
  140. Kim SD, Moon CK, Eun SY, Ryu PD, Jo SA (2005) Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis. Biochem Biophys Res Commun 328(1):326–334PubMedGoogle Scholar
  141. King RG, Sharp JA, Boura AL (1983) The effects of Al3+, Cd2+ and Mn2+ on human erythrocyte choline transport. Biochem Pharmacol 32(23):3611–3617PubMedGoogle Scholar
  142. Kippler M, Ekström EC, Lönnerdal B, Goessler W, Akesson A, El Arifeen S, Persson LA, Vahter M (2007) Influence of iron and zinc status on cadmium accumulation in Bangladeshi women. Toxicol Appl Pharmacol 222(2):221–226PubMedGoogle Scholar
  143. Kippler M, Lönnerdal B, Goessler W, Ekström EC, Arifeen SE, Vahter M (2009) Cadmium interacts with the transport of essential micronutrients in the mammary gland – a study in rural Bangladeshi women. Toxicology 257(1–2):64–69PubMedGoogle Scholar
  144. Kippler M, Hoque AM, Raqib R, Ohrvik H, Ekström EC, Vahter M (2010) Accumulation of cadmium in human placenta interacts with the transport of micronutrients to the fetus. Toxicol Lett 192(2):162–168PubMedGoogle Scholar
  145. Klaassen CD, Wong KL (1982) Cadmium toxicity in the newborn rat. Can J Physiol Pharmacol 60(7):1027–1036PubMedGoogle Scholar
  146. Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238(3):215–220PubMedGoogle Scholar
  147. Komatsu F, Kagawa Y, Kawabata T, Kaneko Y, Chimedregzen U, Purvee B, Otgon J (2011) A high accumulation of hair minerals in Mongolian people: 2(nd) report; influence of manganese, iron, lead, cadmium and aluminum to oxidative stress, Parkinsonism and arthritis. Curr Aging Sci 4(1):42–56PubMedGoogle Scholar
  148. Kostrzewska A, Sobieszek A (1990) Diverse actions of cadmium on the smooth muscle myosin phosphorylation system. FEBS Lett 263(2):381–384PubMedGoogle Scholar
  149. Kramer KK, Zoelle JT, Klaassen CD (1996) Induction of metallothionein mRNA and protein in primary murine neuron cultures. Toxicol Appl Pharmacol 141(1):1–7PubMedGoogle Scholar
  150. Kronemann H (1982) Die Kadmiumbelastung von Pflanze, Tier und Mensch in DDR u. VR Ungarn, Dissertation, LeipzigGoogle Scholar
  151. Kumar R, Agarwal AK, Seth PK (1996) Oxidative stress-mediated neurotoxicity of cadmium. Toxicol Lett 89:65–69PubMedGoogle Scholar
  152. Lacinová L (2005) Voltage-dependent calcium channels. Gen Physiol Biophys 24(Suppl 1):1–78PubMedGoogle Scholar
  153. Lafuente A, Márquez N, Pérez-Lorenzo M, Pazo D, Esquifino AI (2000a) Pubertal and postpubertal cadmium exposure differentially affects the hypothalamic-pituitary-testicular axis function in the rat. Food Chem Toxicol 38(10):913–923PubMedGoogle Scholar
  154. Lafuente A, Márquez N, Pazo D, Esquifino AI (2000b) Effects of subchronic alternating cadmium exposure on dopamine turnover and plasma levels of prolactin, GH and ACTH. Biometals 13(1):47–55PubMedGoogle Scholar
  155. Lafuente A, González-Carracedo A, Romero A, Esquifino AI (2003) Effect of cadmium on 24 h variations in hypothalamic dopamine and serotonin metabolism in adult male rats. Exp Brain Res 149(2):200–206PubMedGoogle Scholar
  156. Lafuente A, González-Carracedo A, Romero A, Cano P, Esquifino AI (2004) Cadmium exposure differentially modifies the circadian patterns of norepinephrine at the median eminence and plasma LH, FSH and testosterone levels. Toxicol Lett 15;146(2):175–182PubMedGoogle Scholar
  157. Lafuente A, González-Carracedo A, Cabaleiro T, Romero A, Esquifino AI (2005a) Τoxic effects of cadmium on GABA and taurine content in different brain areas of adult male rats. J Physiol Biochem 61(3):439–446PubMedGoogle Scholar
  158. Lafuente A, González-Carracedo A, Romero A, Cabaleiro T, Esquifino AI (2005b) Toxic effects of cadmium on the regulatory mechanism of dopamine and serotonin on prolactin secretion in adult male rats. Toxicol Lett 155(1):87–96PubMedGoogle Scholar
  159. Lai JC, Lim L, Davison AN (1981) Differences in the inhibitory effect of Cd2+, Mn2+ and Al3+ on the uptake of dopamine by synaptosomes from forebrain and from striatum of the rat. Biochem Pharmacol 30(22):3123–3125PubMedGoogle Scholar
  160. Lai JC, Lim L, Davison AN (1982) Effects of Cd2+, Mn2+, and Al3+ on rat brain synaptosomal uptake of noradrenaline and serotonin. J Inorg Biochem 17(3):215–225PubMedGoogle Scholar
  161. Lane TW, Morel FM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci USA 97(9):4627–4631PubMedGoogle Scholar
  162. Lauwerys R, Buchet JP, Roels H, Bernard A (1982) Cadmium toxicity: summary of personal studies. Toxicol Eur Res 4(1):7–17PubMedGoogle Scholar
  163. Layton WM Jr, Layton MW (1979) Cadmium induced limb defects in mice: strain associated differences in sensitivity. Teratology 19(2):229–235PubMedGoogle Scholar
  164. Lazarus M, Orct T, Aladrović J, Ljubić BB, Jurasović J, Blanuša M (2011) Effect of selenium pre-treatment on antioxidative enzymes and lipid peroxidation in Cd-exposed suckling rats. Biol Trace Elem Res 142(3):611–622PubMedGoogle Scholar
  165. Lemarié A, Lagadic-Gossmann D, Morzadec C, Allain N, Fardel O, Vernhet L (2004) Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic Biol Med 36(12):1517–1531PubMedGoogle Scholar
  166. Leret ML, Millán JA, Antonio MT (2003) Perinatal exposure to lead and cadmium affects anxiety-like behaviour. Toxicology 186(1–2):125–130PubMedGoogle Scholar
  167. Li KG, Chen JT, Bai SS, Wen X, Song SY, Yu Q, Li J, Wang YQ (2009) Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicol In Vitro 23(6):1007–1013PubMedGoogle Scholar
  168. Liu Y, Templeton DM (2007) Cadmium activates CaMK-II and initiates CaMK-II-dependent apoptosis in mesangial cells. FEBS Lett 581(7):1481–1486PubMedGoogle Scholar
  169. Liu YP, Yang CS, Tzeng SF (2008) Inhibitory regulation of glutamate aspartate transporter (GLAST) expression in astrocytes by cadmium-induced calcium influx. J Neurochem 105(1):137–150PubMedGoogle Scholar
  170. López E, Figueroa S, Oset-Gasque MJ, González MP (2003) Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 138(5):901–911PubMedGoogle Scholar
  171. López E, Arce C, Oset-Gasque MJ, Cañadas S, González MP (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40(6):940–951PubMedGoogle Scholar
  172. Lundberg U, Milanes CL, Pernalete N, Weisinger JR, Contreras NE, Paz-Martinez V, Bellorin-Font E (1987) Effects of cadmium on canine renal cortical adenylate cyclase. Am J Physiol 253(3 Pt 2):F401–F407PubMedGoogle Scholar
  173. Ma M, Xu Z, Li B, Liu Y (2002) Effect of choroid plexus on sequestering cadmium and its pathomorphological change. Wei Sheng Yan Jiu 31(5):335–339PubMedGoogle Scholar
  174. Manso Y, Adlard PA, Carrasco J, Vašák M, Hidalgo J (2011) Metallothionein and brain inflammation. J Biol Inorg Chem 16(7):1103–1113PubMedGoogle Scholar
  175. Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79:4813–4814Google Scholar
  176. Matés JM, Segura JA, Alonso FJ, Márquez J (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic Biol Med 49(9):1328–1341, ReviewPubMedGoogle Scholar
  177. Mazzei GJ, Girard PR, Kuo JF (1984) Environmental pollutant Cd2+ biphasically and differentially regulates myosin light chain kinase and phospholipid/Ca2+-dependent protein kinase. FEBS Lett 173(1):124–128PubMedGoogle Scholar
  178. Mehmet H (2000) Caspases find a new place to hide. Nature 403(6765):29–30PubMedGoogle Scholar
  179. Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, Demirgoren S, Rahamimoff R (1999) Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 79(3):1019–1088PubMedGoogle Scholar
  180. Méndez-Armenta M, Ríos C (2007) Cadmium neurotoxicity. Environ Toxicol Pharmacol 23:350–358PubMedGoogle Scholar
  181. Méndez-Armenta M, Barroso-Moguel R, Villeda-Hernández J, Nava-Ruíz C, Ríos C (2001) Histopathological alterations in the brain regions of rats after perinatal combined treatment with cadmium and dexamethasone. Toxicology 161(3):189–199PubMedGoogle Scholar
  182. Méndez-Armenta M, Villeda-Hernández J, Barroso-Moguel R, Nava-Ruíz C, Jiménez-Capdeville ME, Ríos C (2003) Brain regional lipid peroxidation and metallothionein levels of developing rats exposed to cadmium and dexamethasone. Toxicol Lett 144(2):151–157PubMedGoogle Scholar
  183. Miller JL, Marx J (1998) Apoptosis. Science 281:1301–1304Google Scholar
  184. Miller DK, Dopheide MM, Smith SM, Casteel SW (2005) Dietary cadmium exposure attenuates D-amphetamine-evoked [3H] dopamine release from striatal slices and methamphetamine-induced hyperactivity. Pharmacol Biochem Behav 80(4):557–566PubMedGoogle Scholar
  185. Minami A, Takeda D, Nishibaba ST, Oku N (2001) Cadmium toxicity in synaptic neurotransmission in the brain. Brain Res 894:336–339PubMedGoogle Scholar
  186. Molnár G, Salánki J, Kiss T (2004) Cadmium inhibits GABA-activated ion currents by increasing intracellular calcium level in snail neurons. Brain Res 1008(2):205–211PubMedGoogle Scholar
  187. Montoliu C, Monfort P, Carrasco J, Palacios O, Capdevila M, Hidalgo J, Felipo V (2000) Metallothionein-III prevents glutamate and nitric oxide neurotoxicity in primary cultures of cerebellar neurons. J Neurochem 75(1):266–273PubMedGoogle Scholar
  188. Mosby’s Medical Dictionary (2009) 8th edn. US ElsevierGoogle Scholar
  189. Moschou M, Papaefthimiou C, Kagiava A, Antonopoulou E, Theophilidis G (2008) In vitro assessment of the effects of cadmium and zinc on mammalian nerve fibres. Chemosphere 71(10):1996–2002PubMedGoogle Scholar
  190. Moulis JM, Thévenod F (2010) New perspectives in cadmium toxicity: an introduction. Biometals 5:763–768Google Scholar
  191. Murthy RC, Ali MM, Chandra SV (1986) Effects of in-utero exposure to cadmium on the brain biogenic amine levels and tissue metal distribution in rats. Ind Health 24(1):15–21PubMedGoogle Scholar
  192. Murthy RC, Saxena DK, Lal B, Chandra SV (1989) Chronic cadmium-ethanol administration alters metal distribution and some biochemicals in rat brain. Biochem Int 19(1):135–143PubMedGoogle Scholar
  193. Naranjo CA, Chu AY, Tremblay LK (2002) Neurodevelopmental liabilities in alcohol dependence: central serotonin and dopamine dysfunction. Neurotox Res 4(4):343–361PubMedGoogle Scholar
  194. Nation JR, Baker DM, Bratton GR, Fantasia MA, Andrews K, Womac C (1987) Ethanol self-administration in rats following exposure to dietary cadmium. Neurotoxicol Teratol 9(5):339–344PubMedGoogle Scholar
  195. Nation JR, Wellman PJ, Von Stultz J, Taylor B, Clark DE, Bratton GR (1988) Cadmium exposure results in decreased responsiveness to ethanol. Alcohol 5(2):99–102PubMedGoogle Scholar
  196. Nation JR, Burkey RT, Grover CA, Bratton GR (1994) The effects of cadmium exposure on ethanol pharmacokinetics. Pharmacol Biochem Behav 48(2):543–546PubMedGoogle Scholar
  197. Nemmiche S, Chabane-Sari D, Guiraud P (2007) Role of alpha-tocopherol in cadmium-induced oxidative stress in Wistar rat’s blood, liver and brain. Chem Biol Interact 170(3):221–230PubMedGoogle Scholar
  198. Nicotera P, Zhivotovsky B, Orrenius S (1994) Nuclear calcium transport and the role of calcium in apoptosis. Cell Calcium 16(4):279–288PubMedGoogle Scholar
  199. Nogueira CW, Zeni G, Rocha JB (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104(12):6255–6285PubMedGoogle Scholar
  200. Nordberg M, Nordberg GF (2000) Toxicological aspects of metallothionein. Cell Mol Biol (Noisy-le-grand) 46(2):451–463, ReviewGoogle Scholar
  201. Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238(3):192–200, ReviewPubMedGoogle Scholar
  202. Nowak P, Dabrowska J, Bortel A, Izabela B, Kostrzewa RM, Brus R (2006) Prenatal cadmium and ethanol increase amphetamine-evoked dopamine release in rat striatum. Neurotoxicol Teratol 28(5):563–572PubMedGoogle Scholar
  203. Ognjanović BI, Marković SD, Pavlović SZ, Zikić RV, Stajn AS, Saicić ZS (2008) Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. Physiol Res 57(3):403–411PubMedGoogle Scholar
  204. Okuda B, Iwamoto Y, Tachibana H, Sugita M (1997) Parkinsonism after acute cadmium poisoning. Clin Neurol Neurosurg 99(4):263–265PubMedGoogle Scholar
  205. Olney JW, Wozniak DF, Jevtovic-Todorovic V, Farber NB, Bittigau P, Ikonomidou C (2002) Glutamate and GABA receptor dysfunction in the fetal alcohol syndrome. Neurotox Res 4(4):315–325PubMedGoogle Scholar
  206. Olsson IM, Bensryd I, Lundh T, Ottosson H, Skerfving S, Oskarsson A (2002) Cadmium in blood and urine – impact of sex, age, dietary intake, iron status, and former smoking – association of renal effects. Environ Health Perspect 110(12):1185–1190PubMedGoogle Scholar
  207. Orrenius S, Nicotera P (1994) The calcium ion and cell death. J Neural Transm Suppl 43:1–11, ReviewPubMedGoogle Scholar
  208. Ovalle WK, Nahirney PC (2008) Nahirney Netter’s essential histology. Saunders Elsevier, Philadelphia, p 114Google Scholar
  209. Ozden TA, Gökçay G, Ertem HV, Süoğlu OD, Kiliç A, Sökücü S, Saner G (2007) Elevated hair levels of cadmium and lead in school children exposed to smoking and in highways near schools. Clin Biochem 40(1–2):52–56PubMedGoogle Scholar
  210. Pal R, Nath R, Gill KD (1993a) Influence of ethanol on cadmium accumulation and its impact on lipid peroxidation and membrane bound functional enzymes (Na+, K(+)-ATPase and acetylcholinesterase) in various regions of adult rat brain. Neurochem Int 23(5):451–458PubMedGoogle Scholar
  211. Pal R, Nath R, Gill KD (1993b) Lipid peroxidation and antioxidant defense enzymes in various regions of adult rat brain after co-exposure to cadmium and ethanol. Pharmacol Toxicol 73(4):209–214PubMedGoogle Scholar
  212. Papp A, Nagymajtényi L, Dési I (2003) A study on electrophysiological effects of subchronic cadmium treatment in rats. Environ Toxicol Pharmacol 13:181–186PubMedGoogle Scholar
  213. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77(4):901–930PubMedGoogle Scholar
  214. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810PubMedGoogle Scholar
  215. Park H, Song B, Morel FM (2007) Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environ Microbiol 9(2):403–413PubMedGoogle Scholar
  216. Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333(1):19–39, ReviewPubMedGoogle Scholar
  217. Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, Hediger MA (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274(32):22739–22746PubMedGoogle Scholar
  218. Peters JL, Perlstein TS, Perry MJ, McNeely E, Weuve J (2010) Cadmium exposure in association with history of stroke and heart failure. Environ Res 110(2):199–206PubMedGoogle Scholar
  219. Pillai A, Priya L, Gupta S (2003) Effects of combined exposure to lead and cadmium on the hypothalamic-pituitary axis function in proestrous rats. Food Chem Toxicol 41(3):379–384PubMedGoogle Scholar
  220. Pohl HR, Roney N, Abadin HG (2011) Metal ions affecting the neurological system. Met Ions Life Sci 8:247–262PubMedGoogle Scholar
  221. Poliandri AH, Esquifino AI, Cano P, Jiménez V, Lafuente A, Cardinali DP, Duvilanski BH (2006) In vivo protective effect of melatonin on cadmium-induced changes in redox balance and gene expression in rat hypothalamus and anterior pituitary. J Pineal Res 41(3):238–246PubMedGoogle Scholar
  222. Potier M, Trebak M (2008) New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch 457(2):405–415, ReviewPubMedGoogle Scholar
  223. Pretto A, Loro VL, Morsch VM, Moraes BS, Menezes C, Clasen B, Hoehne L, Dressler V (2010) Acetylcholinesterase activity, lipid peroxidation, and bioaccumulation in silver catfish (Rhamdia quelen) exposed to cadmium. Arch Environ Contam Toxicol 58(4):1008–1014PubMedGoogle Scholar
  224. Pretto A, Loro VL, Baldisserotto B, Pavanato MA, Moraes BS, Menezes C, Cattaneo R, Clasen B, Finamor IA, Dressler V (2011) Effects of water cadmium concentrations on bioaccumulation and various oxidative stress parameters in Rhamdia quelen. Arch Environ Contam Toxicol 60(2):309–318PubMedGoogle Scholar
  225. Priester JH, Stoimenov PK, Mielke RE, Webb SM, Ehrhardt C, Zhang JP, Stucky GD, Holden PA (2009) Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. Environ Sci Technol 43(7):2589–2594PubMedGoogle Scholar
  226. Provias JP, Acherley CA, Smith C, Becker LE (1994) Cadmium encephalopathy: a report with elemental analysis and pathological findings. Acta Neuropathol 88:538–586Google Scholar
  227. Putney JW (2010) Pharmacology of store-operated calcium channels. Mol Interv 10(4):209–218PubMedGoogle Scholar
  228. Putney JW (2011) The physiological function of store-operated calcium entry. Neurochem Res 36(7):1157–1165PubMedGoogle Scholar
  229. Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S (2010) Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 118(2):586–601PubMedGoogle Scholar
  230. Rajanna B, Hobson M, Harris L, Ware L, Chetty CS (1990a) Effects of cadmium and mercury on Na(+)-K+, ATPase and uptake of 3H-dopamine in rat brain synaptosomes. Arch Int Physiol Biochim 98(5):291–296PubMedGoogle Scholar
  231. Rajanna B, Hobson M, Boykin M, Chetty CS (1990b) Effects of chronic treatment with cadmium on ATPases, uptake of catecholamines, and lipid peroxidation in rat brain synaptosomes. Ecotoxicol Environ Saf 20(1):36–41PubMedGoogle Scholar
  232. Reeves PG, Chaney RL (2002) Nutritional status affects the absorption and whole-body and organ retention of cadmium in rats fed rice-based diets. Environ Sci Technol 15;36(12):2684–2692PubMedGoogle Scholar
  233. Richardt G, Federolf G, Habermann E (1986) Affinity of heavy metal ions to intracellular Ca2+-binding proteins. Biochem Pharmacol 35(8):1331–1335PubMedGoogle Scholar
  234. Rigon AP, Cordova FM, Oliveira CS, Posser T, Costa AP, Silva IG, Santos DA, Rossi FM, Rocha JB, Leal RB (2008) Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38 MAPK. Neurotoxicology 29(4):727–734PubMedGoogle Scholar
  235. Rockwell P, Martinez J, Papa L, Gomes E (2004) Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cell Signal 16:343–353PubMedGoogle Scholar
  236. Romero A, Caride A, Pereiro N, Lafuente A (2011) Modulatory effects of melatonin on cadmium-induced changes in biogenic amines in rat hypothalamus. Neurotox Res 20(3):240–249PubMedGoogle Scholar
  237. Sabolić I, Breljak D, Skarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23(5):897–926PubMedGoogle Scholar
  238. Sałaga-Pylak M, Pikuła A, Wójtowicz-Chomicz K, Sygit K, Klatka M, Kowal M, Borzecki A (2010) The influence of intracerebral streptozotocin and/or cadmium on memory processes in mice exposed to transient cerebral oligemia. J Toxicol Environ Health A 73(17–18):1159–1165PubMedGoogle Scholar
  239. Salánki J, Budai D, Hiripi L, Kása P (1993) Acetylcholine level in the brain and other organs of the bivalve Anodonta cygnea L and its modification by heavy metals. Acta Biol Hung 44(1):21–24PubMedGoogle Scholar
  240. Salvatori F, Talassi CB, Salzgeber SA, Spinosa HS, Bernardi MM (2004) Embryotoxic and long-term effects of cadmium exposure during embryogenesis in rats. Neurotoxicol Teratol 26(5):673–680PubMedGoogle Scholar
  241. Sato F, Watanabe T, Hoshi E, Endo A (1985) Teratogenic effect of maternal zinc deficiency and its co-teratogenic effect with cadmium. Teratology 31(1):13–18PubMedGoogle Scholar
  242. Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112(10):1099–1103PubMedGoogle Scholar
  243. Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118(2):182–190PubMedGoogle Scholar
  244. Schwerdtle T, Ebert F, Thuy C, Richter C, Mullenders LH, Hartwig A (2010) Genotoxicity of soluble and particulate cadmium compounds: impact on oxidative DNA damage and nucleotide excision repair. Chem Res Toxicol 23(2):432–442PubMedGoogle Scholar
  245. Shankar VS, Bax CM, Alam AS, Bax BE, Huang CL, Zaidi M (1992) The osteoclast Ca2+ receptor is highly sensitive to activation by transition metal cations. Biochem Biophys Res Commun 187(2):913–918PubMedGoogle Scholar
  246. Shimizu M, Morita S (1990) Effects of fasting on cadmium toxicity, glutathione metabolism, and metallothionein synthesis in rats. Toxicol Appl Pharmacol 103(1):28–39PubMedGoogle Scholar
  247. Shukla GS, Chandra SV (1989) Cadmium toxicity and bioantioxidants: status of vitamin E and ascorbic acid of selected organs in rat. J Appl Toxicol 9(2):119–122PubMedGoogle Scholar
  248. Shukla GS, Hussain T, Chandra SV (1987) Possible role of regional superoxide dismutase activity and lipid peroxide levels in cadmium neurotoxicity: in vivo and in vitro studies in growing rats. Life Sci 41(19):2215–2221PubMedGoogle Scholar
  249. Shukla GS, Srivastava RS, Chandra SV (1988a) Prevention of cadmium-induced effects on regional glutathione status of rat brain by vitamin E. J Appl Toxicol 8(5):355–359PubMedGoogle Scholar
  250. Shukla GS, Hussain T, Chandra SV (1988b) Protective effect of vitamin E on cadmium-induced alterations in lipofuscin and superoxide dismutase in rat brain regions. Pharmacol Toxicol 63(4):305–306PubMedGoogle Scholar
  251. Shukla GS, Srivastava RS, Chandra SV (1988c) Glutathione status and cadmium neurotoxicity: studies in discrete brain regions of growing rats. Fundam Appl Toxicol 11(2):229–235PubMedGoogle Scholar
  252. Shukla GS, Hussain T, Srivastava RS, Chandra SV (1989) Glutathione peroxidase and catalase in liver, kidney, testis and brain regions of rats following cadmium exposure and subsequent withdrawal. Ind Health 27(2):59–69PubMedGoogle Scholar
  253. Shukla A, Shukla GS, Srimal RC (1996) Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol 15(5):400–405PubMedGoogle Scholar
  254. Siegel GJ, Agranoff BW, Albers RW et al (eds) (1999) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, PhiladelphiaGoogle Scholar
  255. Siesjö BK (1993) [Future treatment of stroke. Brain injury can be reduced with drugs]. Nord Med 108(12):316–318, 329Google Scholar
  256. Siesjö BK (1994) Calcium-mediated processes in neuronal degeneration. Ann N Y Acad Sci 747:140–161PubMedGoogle Scholar
  257. Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067):206–211PubMedGoogle Scholar
  258. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106, ReviewPubMedGoogle Scholar
  259. Singh PK, Jones SG, Jones MM (1990) Structural factors in the in vivo chelate mobilization of aged cadmium deposits. Environ Health Perspect 85:361–370PubMedGoogle Scholar
  260. Singhal RL, Merali Z, Hrdina PD (1976) Aspects of the biochemical toxicology of cadmium. Fed Proc 35(1):75–80PubMedGoogle Scholar
  261. Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line of defense against cadmium toxicity. FASEB J 1(3):220–223PubMedGoogle Scholar
  262. Sinha M, Manna P, Sil PC (2008) Cadmium-induced neurological disorders: prophylactic role of taurine. J Appl Toxicol 28(8):974–986PubMedGoogle Scholar
  263. Slater TF (1987) Free radicals and tissue injury: fact and fiction. Br J Cancer 8(Suppl):5–10Google Scholar
  264. Smith JB, Dwyer SD, Smith L (1989) Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes. J Biol Chem 264(13):7115–7118PubMedGoogle Scholar
  265. Speizer LA, Watson MJ, Kanter JR, Brunton LL (1989) Inhibition of phorbol ester binding and protein kinase C activity by heavy metals. J Biol Chem 264(10):5581–5585PubMedGoogle Scholar
  266. Stellern J, Marlowe M, Cossairt A, Errera J (1983) Low lead and cadmium levels and childhood visual-perception development. Percept Mot Skills 56(2):539–544PubMedGoogle Scholar
  267. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336PubMedGoogle Scholar
  268. Storm DR, Hansel C, Hacker B, Parent A, Linden DJ (1998) Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron 20(6):1199–1210PubMedGoogle Scholar
  269. Strazielle N, Ghersi-Egea JF (2000) Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 59(7):561–574, ReviewPubMedGoogle Scholar
  270. Su Y, Hu M, Fan C, He Y, Li Q, Li W, Wang LH, Shen P, Huang Q (2010) The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials 31(18):4829–4834PubMedGoogle Scholar
  271. Sun TJ, Miller ML, Hastings L (1996) Effects of inhalation of cadmium on the rat olfactory system: behavior and morphology. Neurotoxicol Teratol 18(1):89–98PubMedGoogle Scholar
  272. Sunahara RK, Taussig R (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2(3):168–184PubMedGoogle Scholar
  273. Suszkiw J, Toth G, Murawsky M, Cooper GP (1984) Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ. Brain Res 323(1):31–46PubMedGoogle Scholar
  274. Sutoo D, Akiyama K (2000) Effect of cadmium or magnesium on calcium-dependent central function that reduces blood pressure. Arch Toxicol 74(1):1–4PubMedGoogle Scholar
  275. Sutoo D, Akiyama K, Imamiya S (1990) A mechanism of cadmium poisoning: the cross effect of calcium and cadmium in the calmodulin-dependent system. Arch Toxicol 64(2):161–164PubMedGoogle Scholar
  276. Suzuki Y, Arito H (1975) Cadmium content of the olfactory bulb of Cd administered rats for a long term. Ind Health 13:77–79Google Scholar
  277. Szmydynger-Chodobska J, Chodobski A, Johanson CE (1994) Postnatal developmental changes in blood flow to choroid plexuses and cerebral cortex of the rat. Am J Physiol 266(5 Pt 2):R1488–R1492PubMedGoogle Scholar
  278. Tajuddin N, Druse MJ (1988a) Chronic maternal ethanol consumption results in decreased serotonergic 5-HT1 sites in cerebral cortical regions from offspring. Alcohol 5(6):465–470PubMedGoogle Scholar
  279. Tajuddin N, Druse MJ (1988b) Effects of in utero ethanol exposure on cortical 5-HT2 binding sites. Alcohol 5(6):461–464PubMedGoogle Scholar
  280. Takeda A, Takefuta S, Ijiro H, Okada S, Oku N (1999) 109Cd transport in rat brain. Brain Res Bull 49(6):453–457PubMedGoogle Scholar
  281. Takeda A, Suzuki M, Oku N (2002) Possible involvement of plasma histidine in differential brain permeability to zinc and cadmium. Biometals 15(4):371–375PubMedGoogle Scholar
  282. Tallkvist J, Persson E, Henriksson J, Tjälve H (2002) Cadmium-metallothionein interactions in the olfactory pathways of rats and pikes. Toxicol Sci 67(1):108–113PubMedGoogle Scholar
  283. Tandon SK, Singh S, Prasad S, Khandekar K, Dwivedi VK, Chatterjee M, Mathur N (2003) Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat. Toxicol Lett 145(3):211–217PubMedGoogle Scholar
  284. Tang M, Wang M, Xing T, Zeng J, Wang H, Ruan DY (2008) Mechanisms of unmodified CdSe quantum dot-induced elevation of cytoplasmic calcium levels in primary cultures of rat hippocampal neurons. Biomaterials 29(33):4383–4391PubMedGoogle Scholar
  285. Tayarani I, Cloëz I, Clément M, Bourre JM (1989) Antioxidant enzymes and related trace elements in aging brain capillaries and choroid plexus. J Neurochem 53(3):817–824PubMedGoogle Scholar
  286. Thatcher RW, Lester ML, McAlaster R, Horst R (1982) Effects of low levels of cadmium and lead on cognitive functioning in children. Arch Environ Health 37(3):159–166PubMedGoogle Scholar
  287. Thévenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238(3):221–239PubMedGoogle Scholar
  288. Thévenod F (2010) Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals 23(5):857–875PubMedGoogle Scholar
  289. Thévenod F, Jones SW (1992) Cadmium block of calcium current in frog sympathetic neurons. Biophys J 63(1):162–168PubMedGoogle Scholar
  290. Thirumoorthy N, Manisenthil Kumar KT, Shyam Sundar A, Panayappan L, Chatterjee M (2007) Metallothionein: an overview. World J Gastroenterol 13(7):993–996PubMedGoogle Scholar
  291. Tjälve H, Henriksson J, Tallkvist J, Larsson BS, Lindquist NG (1996) Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharmacol Toxicol 79(6):347–356PubMedGoogle Scholar
  292. Toledo-Maciel A, Gonçalves-Gomes S, de Gouveia Castex M, Vieyra A (1998) Progressive inactivation of plasma membrane (Ca2++Mg2+)ATPase by Cd2+ in the absence of ATP and reversible inhibition during catalysis. Biochemistry 37(44):15261–15265PubMedGoogle Scholar
  293. Tomlinson G, Mutus B, McLennan I (1981) Activation and inactivation of acetylcholinesterase by metal ions. Can J Biochem 59:728–735PubMedGoogle Scholar
  294. Tsakiris S, Kontopoulos AN (1993) Time changes in Na+, K(+)-ATPase, Mg(++)-ATPase and acetylcholinesterase activities in the rat cerebrum and cerebellum caused by stress. Pharmacol Biochem Behav 44(2):339–342PubMedGoogle Scholar
  295. Usai C, Barberis A, Moccagatta L, Marchetti C (1999) Pathways of cadmium influx in mammalian neurons. J Neurochem 72(5):2154–2161PubMedGoogle Scholar
  296. Vahter M, Akesson A, Lidén C, Ceccatelli S, Berglund M (2007) Gender differences in the disposition and toxicity of metals. Environ Res 104(1):85–95, ReviewPubMedGoogle Scholar
  297. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208, ReviewPubMedGoogle Scholar
  298. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84PubMedGoogle Scholar
  299. Valois AA, Webster WS (1989) The choroid plexus as a target site for cadmium toxicity following chronic exposure in the adult mouse: an ultrastructural study. Toxicology 55(1–2):193–205PubMedGoogle Scholar
  300. Vesey DA (2010) Transport pathways for cadmium in the intestine and kidney proximal tubule: focus on the interaction with essential metals. Toxicol Lett 198(1):13–19, ReviewPubMedGoogle Scholar
  301. Viaene MK, Roels HA, Leenders J, De Groof M, Swerts LJ, Lison D, Masschelein R (1999) Cadmium: a possible etiological factor in peripheral polyneuropathy. Neurotoxicology 20(1):7–16PubMedGoogle Scholar
  302. Viaene MK, Masschelein R, Leenders J, De Groof M, Swerts LJ, Roels HA (2000) Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study. Occup Environ Med 57(1):19–27PubMedGoogle Scholar
  303. Viarengo A, Nicotera P (1991) Possible role of Ca2+ in heavy metal cytotoxicity. Comp Biochem Physiol C 100(1–2):81–84, ReviewPubMedGoogle Scholar
  304. Vickroy TW, Schneider CJ, Hildreth JM (1992) Pharmacological heterogeneity among calcium channels that subserve acetylcholine release in vertebrate forebrain. Neuropharmacology 31(3):307–309PubMedGoogle Scholar
  305. Vig PJ, Nath R (1991) In vivo effects of cadmium on calmodulin and calmodulin regulated enzymes in rat brain. Biochem Int 23(5):927–934PubMedGoogle Scholar
  306. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192(2–3):95–117PubMedGoogle Scholar
  307. Wang Y, Fang J, Lenonard SS, Murali Krishna Rao K (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443PubMedGoogle Scholar
  308. Wang S, Hu P, Wang HL, Wang M, Chen JT, Tang JL, Ruan DY (2008) Effects of Cd(2+) on AMPA receptor-mediated synaptic transmission in rat hippocampal CA1 area. Toxicol Lett 176(3):215–222PubMedGoogle Scholar
  309. Wang L, Cao J, Chen D, Liu X, Lu H, Liu Z (2009) Role of oxidative stress, apoptosis, and intracellular homeostasis in primary cultures of rat proximal tubular cells exposed to cadmium. Biol Trace Elem Res 127(1):53–68PubMedGoogle Scholar
  310. Watanabe M, Henmi K, Ogawa K, Suzuki T (2003) Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis. Comp Biochem Physiol C Toxicol Pharmacol 134(2):227–234PubMedGoogle Scholar
  311. Wätjen W, Haase H, Biagioli M, Beyersmann D (2002a) Induction of apoptosis in mammalian cells by cadmium and zinc. Environ Health Perspect 110(Suppl 5):865–867PubMedGoogle Scholar
  312. Wätjen W, Cox M, Biagioli M, Beyersmann D (2002b) Cadmium-induced apoptosis in C6 glioma cells: mediation by caspase 9-activation. Biometals 15(1):15–25PubMedGoogle Scholar
  313. Wong KL, Cachia R, Klaassen CD (1980) Comparison of the toxicity and tissue distribution of cadmium in newborn and adult rats after repeated administration. Toxicol Appl Pharmacol 56(3):317–325PubMedGoogle Scholar
  314. Wong KL, Klaassen CD (1982) Neurotoxic effects of cadmium in young rats. Toxicol Appl Pharmacol 63(3):330–337PubMedGoogle Scholar
  315. Yamagami K, Nishimura S, Sorimachi M (1998) Cd2+ and Co2+ at micromolar concentrations mobilize intracellular Ca2+ via the generation of inositol 1,4,5-triphosphate in bovine chromaffin cells. Brain Res 798(1–2):316–319PubMedGoogle Scholar
  316. Yang Z, Yang S, Qian SY, Hong JS, Kadiiska MB, Tennant RW, Waalkes MP, Liu J (2007) Cadmium-induced toxicity in rat primary mid-brain neuroglia cultures: role of oxidative stress from microglia. Toxicol Sci 98(2):488–494PubMedGoogle Scholar
  317. Yang CS, Tzou BC, Liu YP, Tsai MJ, Shyue SK, Tzeng SF (2008) Inhibition of cadmium-induced oxidative injury in rat primary astrocytes by the addition of antioxidants and the reduction of intracellular calcium. J Cell Biochem 103(3):825–834PubMedGoogle Scholar
  318. Yoshida S (2001) Re-evaluation of acute neurotoxic effects of Cd2+ on mesencephalic trigeminal neurons of the adult rat. Brain Res 892(1):102–110PubMedGoogle Scholar
  319. Yuan T, Gomes AV, Barnes JA, Hunter HN, Vogel HJ (2004) Spectroscopic characterization of the calmodulin-binding and autoinhibitory domains of calcium/calmodulin-dependent protein kinase I. Arch Biochem Biophys 421(2):192–206PubMedGoogle Scholar
  320. Zaroogian G, Jackim E (2000) In vivo metallothionein and glutathione status in an acute response to cadmium in Mercenaria mercenaria brown cells. Comp Biochem Physiol C Toxicol Pharmacol 127(3):251–261PubMedGoogle Scholar
  321. Zheng W (2001a) Neurotoxicology of the brain barrier system: new implications. J Toxicol Clin Toxicol 39:711–719PubMedGoogle Scholar
  322. Zheng W (2001b) Toxicology of choroid plexus: special reference to metal-induced neurotoxicities. Microsc Res Tech 52(1):89–103PubMedGoogle Scholar
  323. Zheng W, Perry DF, Nelson DL, Aposhian HV (1991) Choroid plexus protects cerebrospinal fluid against toxic metals. FASEB J 5(8):2188–2193PubMedGoogle Scholar
  324. Zheng W, Aschner M, Ghersi-Egea JF (2003) Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 192(1):1–11, ReviewPubMedGoogle Scholar
  325. Zhou FC, Sari Y, Li TK, Goodlett C, Azmitia EC (2002) Deviations in brain early serotonergic development as a result of fetal alcohol exposure. Neurotox Res 4(4):337–342PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Pharmacology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations