Total Lagrangian Explicit Dynamics-Based Simulation of Tissue Tearing

  • Kumar Vemaganti
  • Grand R. Joldes
  • Karol Miller
  • Adam Wittek
Conference paper


This study presents an approach to modeling the tearing of tissue in two dimensions taking into account both material and geometrical nonlinearities. The approach is based on the total Lagrangian explicit dynamics (TLED) algorithm and realigns edges in the mesh along the path of the tear by node relocation. As such, no new elements are created during the propagation of the tear. The material is assumed to be isotropic, and the tearing criterion is based on the maximum node-averaged principal stress. Preliminary results show that the approach is capable of handling both isotropic and anisotropic tears.


Tissue tearing Tissue cutting Total Lagrangian Explicit dynamics Soft tissue 



This research was carried out while the first author was a visiting professor at the University of Western Australia.


  1. 1.
    J. Yan, J.S. Strenkowski, Journal of Materials Processing Technology 174, 102 (2006)CrossRefGoogle Scholar
  2. 2.
    A.B. Mor, T. Kanade, in MICCAI 2000, ed. by S.L. Delp, A.M. DiGioia, B. Jaramaz (Springer-Verlag, 2000), pp. 598–608Google Scholar
  3. 3.
    H.W. Nienhuys, A.F. van der Stappen, in MICCAI 2001, ed. by W. Niessen, M. Viergever (Springer-Verlag, 2001), pp. 145–152Google Scholar
  4. 4.
    C. Mendoza, C. Laugier, in IS4TM 2003, ed. by N. Ayache, H. Delingette (Springer-Verlag, 2003), pp. 175–182Google Scholar
  5. 5.
    C. Mendoza, C. Laugier, in Proceedings of the 2003 IEEE International Conference on Robotics and Automation (2003), pp. 1109–1114Google Scholar
  6. 6.
    M. Harders, D. Steinemann, M. Gross, G. Szekely, in MICCAI 2005, ed. by J. Duncan, G. Gerig (Springer-Verlag, 2005), pp. 567–574Google Scholar
  7. 7.
    J. Allard, M. Marchal, S. Cotin, in Medicine Meets Virtual Reality 17 (IOS Press, 2009), pp. 13–18Google Scholar
  8. 8.
    K. Miller, G.R. Joldes, D. Lance, A. Wittek, Commun. Numer. Meth. Engng. 23, 121 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    K.J. Bathe, Finite Element Procedures (Prentice-Hall, Englewood Cliffs, NJ, 1996)Google Scholar
  10. 10.
    G.R. Joldes, A. Wittek, K. Miller, Int. J. Numer. Meth. Biomed. Engng. 27, 173 (2011)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kumar Vemaganti
    • 1
  • Grand R. Joldes
  • Karol Miller
  • Adam Wittek
  1. 1.University of CincinnatiCincinnatiUSA

Personalised recommendations