Influence of the A/B Stoichiometry on Defect Structure, Sintering, and Microstructure in Undoped and Cu-Doped KNN

  • Michael J. Hoffmann
  • Hans Kungl
  • Jérôme Acker
  • Christian Elsässer
  • Sabine Körbel
  • Pavel Marton
  • Rüdiger-A. Eichel
  • Ebru Erünal
  • Peter Jakes
Chapter

Abstract

Development of ceramics based on the alkaline niobate (KNN) system is one of the major lines of current research pointing to substitution of the lead containing ferroelectrics by lead‐free materials. Sodium potassium niobate (K0.5Na0.5)NbO3 is a prototype material of lead‐free alkaline‐transition metal ferroelectrics with \({\rm A}^{1+}{\rm B}^{5+}{\rm O}_3^{2-}\) perovskite structure. Processing procedures for KNN‐based ceramics are however challenging due to the hygroscopic behavior of sodium‐ and potassium carbonates and the evaporation of alkalines at the elevated processing temperatures, which make it difficult to control the stoichiometry of the ceramics. Alkaline (A‐site) or niobium (B‐site) excess results in pronounced qualitative differences of the microstructure in KNN ceramics.

References

  1. 1.
    Acker J, Kungl H, Hoffmann MJ (2010) Influence of the alkaline- and niobium excess on sintering and microstructure of sodium-potassium niobate (K0.5Na0.5)NbO3. J Am Ceram Soc 93:1270–1281Google Scholar
  2. 2.
    Ahn CW, Karmarkar M, Viehland D, Kang DH, Bae KS, Priya S (2008) Low temperature sintering and piezoelectric properties of Cu-doped K0.5Na0.5NbO3 ceramics. Ferroelectron Lett 35:55–72Google Scholar
  3. 3.
    Ahn CW, Park CS, Chang CH, Nahm S, Yoo MJ, Lee HG, Priya S (2009) Sintering behavior of lead free (K, Na)NbO3-based piezoelectric ceramics. J Am Ceram Soc 89:2033–2038CrossRefGoogle Scholar
  4. 4.
    Ahn CW, Park CS, Priya S (2010) Sintered composites for low temperature coefficient of piezoelectric property in KNN-based lead free materials. Funct Mater Lett 3:35–39CrossRefGoogle Scholar
  5. 5.
    Azough F, Wegrzyn M, Freer R, Sharma S, Hall D N. Setter, EPFL, Lausanne, Switzerland (2011) Microstructure and piezoelectric properties CuO added (K, Na, Li)NbO3 lead-free piezoceramics. J Eur Ceram Soc 31:569–576CrossRefGoogle Scholar
  6. 6.
    Baker DW, Thomas PA, Zhang N, Glazer AM (2009) Structural study of KxNa1−xNbO3 (KNN) for compositions in the range x=0.24-0.36. Acta Cryst B65Google Scholar
  7. 7.
    Birol H, Damjanovic D, Setter N (2006) Preparation and characterization of (K0.5Na0.5)NbO3 ceramic. J Eur Ceram Soc 26:861–866CrossRefGoogle Scholar
  8. 8.
    Bomlai P, Wichianrat P, Muensit S, Milne SJ (2007) Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. J Am Ceram Soc 90:1650–1655CrossRefGoogle Scholar
  9. 9.
    Boysen H (2007) Coherence effects in the scattering from domain walls. J Phys Condens Matter 88:275206CrossRefGoogle Scholar
  10. 10.
    Bruce DA (1981) Scattering properties of ferroelectric domain walls. J Phys C Solid State Phys 14:5195–5214CrossRefGoogle Scholar
  11. 11.
    Damjanovic D, Klein N, Li J, Porokhonskyy V (2010) What can be expected from lead-free piezoelectric materials? Funct Mater Lett 3:5–13CrossRefGoogle Scholar
  12. 12.
    Demartin Maeder M, Damjanovic D (2002) Lead free ferroelectric materials. In: Setter N (ed) Piezoelectric materials in devices. Lausanne, pp 389–412Google Scholar
  13. 13.
    Demartin Maeder M, Damjanovic D, Setter N (2004) Lead free ferroelectric materials. J Electroceram 13:385–392Google Scholar
  14. 14.
    Egerton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc 42:438–442CrossRefGoogle Scholar
  15. 15.
    Eichel R-A (2008) Characterization of defect structure in acceptor-modified piezoelectric ceramics by multifrequency and multipulse electron paramagnetic resonance spectroscopy. J Am Ceram Soc 91:691701CrossRefGoogle Scholar
  16. 16.
    Eichel R-A (2011) Structural and dynamic properties of oxygen vacancies in perovskite oxides – analysis of defect structure by modern multi-frequency and pulsed EPR techniques. Phys Chem Chem Phys 13:368–384CrossRefGoogle Scholar
  17. 17.
    Eichel R-A, Erhart P, Träskelin P, Albe C, Kungl H, Hoffmann MJ (2008) Defect-dipole formation in copper-doped PbTiO3 ferroelectrics. Phys Rev Lett 100:095504CrossRefGoogle Scholar
  18. 18.
    Eichel R-A, Drahus MD, Jakes P, Erünal E, Erdem E, Parashar SKS, Kungl H, Hoffmann MJ (2009a) Defect structure and formation of defect complexes in Cu2+-modified metal oxides derived from a spin-Hamiltonian parameter analysis. Mol Phys 107:1981–1986CrossRefGoogle Scholar
  19. 19.
    Eichel R-A, Erünal E, Drahus MD, Smyth DM, van Tol J, Acker J, Kungl H, Hoffmann MJ (2009b) Local variations in defect polarization and covalent bonding in ferroelectric Cu2+-doped PZT and KNN functional ceramics at the morphotropic phase boundary. Phys Chem Chem Phys 11:8698–8705CrossRefGoogle Scholar
  20. 20.
    Erhart P, Eichel R-A, Träskelin P, Albe K (2007) Association of oxygen vacancies with impurity metal ions in lead titanate. Phys Rev B 76:174116CrossRefGoogle Scholar
  21. 21.
    Erünal E, Eichel R-A, Körbel S, Elsässer C, Acker J, Kungl H, Hoffmann MJ (2010) Defect structure of copper doped potassium niobate ceramics. Funct Mater Lett 3:19–24CrossRefGoogle Scholar
  22. 22.
    Feng Z, Ren X (2008) Striking similarity of ferroelectric aging effect in tetragonal, orthorhom-bic and rhombohedral crystal structures. Phys Rev B 77:134115CrossRefGoogle Scholar
  23. 23.
    Fisher JG, Bencan A, Godnjavec J, Kosec M (2008) Growth behavior of potassium sodium niobate single crystals grown by solid-state crystal growth using K4CuNb8O23 as a sintering aid. J Eur Ceram Soc 28:1657–1663CrossRefGoogle Scholar
  24. 24.
    Flückiger U, Arend H, Oswald H (1975) Synthesis of KNbO3 powder. J Am Ceram Soc 56:575–577Google Scholar
  25. 25.
    Gasperin M, Le Bihan M (1986) Mécanisme d’hydratation des niobates alcalins lamellaires de formule A4Nb6O17 (A=K, Rb, Cs). J Solid State Chem 43:346–353CrossRefGoogle Scholar
  26. 26.
    Hadley G (1962) Linear programming. Addison-Wesley, ReadingMATHGoogle Scholar
  27. 27.
    Hagh NM, Kerman K, Jadidian B, Safari A (2009) Dielectric and piezoelectric properties of Cu2+-doped alkali niobates. J Eur Ceram Soc 29:2325–2332CrossRefGoogle Scholar
  28. 28.
    Hewat AW (1973) Cubic-tetragonal-orthorhombic-rhombohedral ferroelectric transitions in perovskite potassium niobate: neutron powder profile refinement of the structure. J Phys C Solid State Phys 6:2559–2572CrossRefGoogle Scholar
  29. 29.
    Hoffmann MJ, Kungl H, Theissmann R, Wagner S (2008) Microstructural analysis based on microscopy and x-ray diffraction. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity – evolution and future of a technology. Springer series in materials science 114. Springer, Berlin, pp 401–423Google Scholar
  30. 30.
    Hollenstein E (2007) Preparation and properties of KNbO3 based piezoceramics. PhD Thesis, EPFL LausanneGoogle Scholar
  31. 31.
    Jaeger RE, Egerton L (1962) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 42:209–213CrossRefGoogle Scholar
  32. 32.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic, MariettaGoogle Scholar
  33. 33.
    Jenko D, Malic B, Bernard JB, Cilensek J, Kosec M (2003) Synthesis and sintering of KNN 50/50 ceramics. Mater Technol 37:22–28Google Scholar
  34. 34.
    Jenko D, Bencan A, Malic B, Holc J, Kosec M (2005) Electron microscopy studies of potassium-sodium niobate ceramics. Microsc Microanal 11:572–580CrossRefGoogle Scholar
  35. 35.
    Jin YM, Wang YU, Khachaturian AG, Li JF, Viehland D (2003a) Conformal miniaturization of domains with low domain wall energy: monoclinic ferroelectric states near the morphotropic phase boundary. Phys Rev Lett 91:197601CrossRefGoogle Scholar
  36. 36.
    Jin YM, Wang YU, Khachaturian AG, Li JF, Viehland D (2003b) Adaptive ferroelectric states in systems with low domain wall energy: tetragonal microdomains. J Appl Phys 94:3629–3640CrossRefGoogle Scholar
  37. 37.
    Jin L, He Z, Damjanovic D (2009) Nanodomains in Fe3+-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties. Appl Phys Lett 95:012905CrossRefGoogle Scholar
  38. 38.
    Körbel S, Elsässer C (2011) Cu substitutionals and defect complexes in the lead-free ferroelectric KNN. In: Nagel WE et al (eds) High performance computing in science and engineering, 10. Springer, Heidelberg, p 181Google Scholar
  39. 39.
    Körbel S, Marton P, Elsässer C (2010) Formation ofvacancies and copper substitutionals in potassium sodium niobate under various processing conditions. Phys Rev B 81:174115CrossRefGoogle Scholar
  40. 40.
    Kosec M, Kolnar D (1975) On activated sintering and electrical properties of NaKNbO3. Mater Res Bull 10:335–340CrossRefGoogle Scholar
  41. 41.
    Kosec M, Malic B, Bencan A, Rojas T (2008) KNN-based piezoelectric ceramics. In: Safari A, Akdogan EK (eds) Piezoelectric and acoustic materials for transducer applications. Springer Science and Business Media, New York, pp 81–102CrossRefGoogle Scholar
  42. 42.
    Kosec M, Malic B, Golob AB, Rojac T, Tellier J (2010) Alkaline niobate based piezoceramics: crystal structure, synthesis, sintering and microstructure. Funct Mater Lett 3:15–18CrossRefGoogle Scholar
  43. 43.
    Kungl H, Hoffmann MJ (2010) Effects of sintering temperature on microstructure and high field strain of niobium-strontium doped morphotropic lead zirconate titanate. J Appl Phys 107:054111CrossRefGoogle Scholar
  44. 44.
    Li E, Kakemoto H, Wada S, Tsurumi T (2007) Influence of CuO on the structure and piezoelectric properties of alkaline-niobate based lead-free ceramics. J Am Ceram Soc 90:1787–1791CrossRefGoogle Scholar
  45. 45.
    Li E, Kakemoto H, Hoshina T, Tsurumi T (2008a) A shear-mode ultrasonic motor using potassium-sodium niobate based ceramics with high mechanical quality factor. Jpn J Appl Phys 47:7702–7706CrossRefGoogle Scholar
  46. 46.
    Li E, Sasaki R, Hoshina T, Takeda H, Tsurumi T (2008) Miniature ultrasonic motor using shear mode of potassium-sodium niobate based lead-free piezoelectric ceramics. Jpn J Appl Phys 48:09KD11Google Scholar
  47. 47.
    Lim JB, Zhang S, Lee HJ, Jeon JH, Shrout TR (2010) (K, Na)NbO3-based ceramics for piezoelectric “hard” lead-free materials. J Am Ceram Soc 93:1218–1220Google Scholar
  48. 48.
    Lin D, Kwok KW, Chan HL (2008) Piezoelectric and ferroelectric properties of Cu-doped K0.5Na0.5NbO3 lead-free ceramics. J Phys D Appl Phys 41:045401CrossRefGoogle Scholar
  49. 49.
    Lundberg M, Sundberg M (1986) Studies in the KNbO3-Nb2O5 system by high resolution electron microscopy and x-ray powder diffraction. J Solid State Chem 63:216–230CrossRefGoogle Scholar
  50. 50.
    Malic B, Jenko D, Bernard JB, Cilensek J, Kosec M (2003) Synthesis and sintering of (K,Na)NbO3-based ceramics. In: Alario-Franco MA, Greenblatt M, Rohrer G, Whittingham MS (eds) Solid state chemistry of inorganic materials, IV. Materials Research Society, Warrendale, pp 755, 83–88Google Scholar
  51. 51.
    Malic B, Bernard J, Holc J, Jenko D, Kosec M (2005) Alkaline-earth doping in (K, Na)NbO3 based piezoceramics. J Eur Ceram Soc 25:2707–2711CrossRefGoogle Scholar
  52. 52.
    Malic B, Jenko D, Holc J, Hrovat M, Kosec M (2008a) Synthesis of sodium potassium niobate: a diffusion couples study. J Am Ceram Soc 91:1916–1922CrossRefGoogle Scholar
  53. 53.
    Malic B, Bernard J, Bencan A, Kosec M (2008b) Influence of zirconia addition on the microstructure of (K0.5Na0.5)NbO3 ceramics. J Eur Ceram Soc 28:1191–1196CrossRefGoogle Scholar
  54. 54.
    Marton P, Elsässer C (2011) Switching of a substitutional-iron/oxygen-vacancy defect complex in ferroelectric PbTiO3 from first principles. Phys Rev B 83:020106(R)Google Scholar
  55. 55.
    Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2004) Sinterability and piezoelectric properties of (K, Na)NbO3 ceramics with novel sintering aid. Jpn J Appl Phys 43:7159–7163CrossRefGoogle Scholar
  56. 56.
    Matsubara M, Yamaguchi T, Sakamoto WT, Kikuta K, Yogo T, Hirano S (2005a) Pro-cessing and piezoelectric properties of (K, Na)(Nb, Ta)O3 ceramics. J Am Ceram Soc 88:1190–1196CrossRefGoogle Scholar
  57. 57.
    Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2005) Synthesis and characterization of (K0.5Na0.5)(Nb0.7Ta0.3)O3 piezoelectric ceramics sintered with sintering aid K5.4Cu1.3Ta10 O29. Jpn J Appl Phys 44:6618–6623Google Scholar
  58. 58.
    Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2005) Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3-K5.4Cu1.3Ta10O29 ceramics. J Appl Phys 97:114105Google Scholar
  59. 59.
    Nassau K, Shiever JW, Bernstein JL (1969) Crystal growth and properties of mica-like potassium niobates. J Electrochem Soc 116:348–353CrossRefGoogle Scholar
  60. 60.
    Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic, New YorkGoogle Scholar
  61. 61.
    Park HY, Choi JY, Choi MK, Cho KH, Nahm S (2008a) Effect of CuO on the sintering temperature and piezoelectric properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J Am Ceram Soc 91:2374–2377CrossRefGoogle Scholar
  62. 62.
    Park HY, Seo IT, Choi MK, Nahm S, Lee HG, Kang HW, Choi BH (2008b) Microstructure and piezoelectric properties of the CuO added (Na0.5K0.5)(Nb0.97Sb0.03)O3 lead-free piezoceramics. J Appl Phys 104:034103CrossRefGoogle Scholar
  63. 63.
    Park HY, Seo IT, Choi JH, Nahm S, Lee HG (2010) Low temperature sintering and piezoelectric properties of lead free piezoelectric ceramics. J Am Ceram Soc 93:36–39CrossRefGoogle Scholar
  64. 64.
    Randall CA, Kim N, Kucera J, Cao W, Shrout TR (1998) Intrinsic and extrinsic size effects in fine grained morphotropic phase boundary lead zirconate titanate ceramics. J Am Ceram Soc 81:677CrossRefGoogle Scholar
  65. 65.
    Reisman A, Holtzberg F (1955) Phase equilibria in the system K2CO3-Nb2O5 by the method of differential thermal analysis. J Am Chem Soc 116:2115–2119CrossRefGoogle Scholar
  66. 66.
    Ren X (2004) Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat Mater 3:91CrossRefGoogle Scholar
  67. 67.
    Reuter K, Scheffler M (2001) Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys Rev B 65:35406CrossRefGoogle Scholar
  68. 68.
    Robels U, Arlt G (1993) Domain wall clamping in ferroelectrics by orientation of defects. J Appl Phys 73:3454–3460CrossRefGoogle Scholar
  69. 69.
    Saito Y, Takao H (2006) High performance lead-free piezoelectric ceramics in the (K, Na)NbO3-LiTaO3 solid solution system. Ferroelectronics 338:17–32CrossRefGoogle Scholar
  70. 70.
    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87CrossRefGoogle Scholar
  71. 71.
    Schmitt LA, Schönau KA, Theissmann R, Fuess H, Kungl H, Hoffmann MJ (2007) Composition dependence of the domain configuration and size in PZT ceramics. J Appl Phys 101:074107CrossRefGoogle Scholar
  72. 72.
    Schönau KA, Schmitt LA, Knapp M, Fuess H, Eichel R-A, Kungl H, Hoffmann MJ (2007) Nanodomain structures of Pb(Zr, Ti)O3 at its morphotropic phase boundary: investigations from local to average structure. Phys Rev B 75:184117CrossRefGoogle Scholar
  73. 73.
    Shafer MW, Roy R (1959) Phase equilibria in the system NaNbO3-Nb2O5. J Am Ceram Soc 42:482–485CrossRefGoogle Scholar
  74. 74.
    Shigemi A, Wada T (2004) Enthalpy of formation of various phases and formation energy of point defects in pervskite NaNbO3 by first principles calculation. Jpn J Appl Phys 43:6793–6798CrossRefGoogle Scholar
  75. 75.
    Shigemi A, Wada T (2005) Evaluation of phases and vacancy formation energy in KNbO3 by first principles calculations. Jpn J Appl Phys 44:8048–8054CrossRefGoogle Scholar
  76. 76.
    Stannek W (1968) Characterization of sintering phenomena of (Na0.5K0.5)NbO3. Master Thesis, University of California, BerkeleyGoogle Scholar
  77. 77.
    Takao H, Saito Y, Aoki Y, Horibuchi K (2006) Microstructural evolution of crystalline oriented piezoelectric ceramics with a sintering aid of CuO. J Am Ceram Soc 89:1951–1956CrossRefGoogle Scholar
  78. 78.
    Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M (2009) Crystal structure and phase transitions of sodium potassium niobate perovskites. Solid State Sci 11:320–324CrossRefGoogle Scholar
  79. 79.
    Van de Walle C, Neugebauer J (2004) First-principles calculations for defects and impurities: applications to III-nitrides. J Appl Phys 95:3851CrossRefGoogle Scholar
  80. 80.
    Wang U (2006) Diffraction theory of nanotwin superlattices with low symmetry phase. Phys Rev B 74:104109CrossRefGoogle Scholar
  81. 81.
    Wang K, Zhang BP, Li JF, Zhang LM (2008) Lead-free Na0.5K0.5NbO3 piezoelectric ceramics fabricated by spark plasma sitnering: annealing effect on electrical properties. J Electroceram 21:251–254Google Scholar
  82. 82.
    Wang J, Damjanovic D (2007) Compositional inhomogeneity in Li and Ta modified (K, Na)NbO3 ceramics. J Am Ceram Soc 90:3485–3489CrossRefGoogle Scholar
  83. 83.
    Wang R, Xie R, Sekiya T, Shimojo Y (2004) Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma sintering method. Mater Res Bull 39:1709–1715CrossRefGoogle Scholar
  84. 84.
    Wang K, Zhang BP, Li JF, Zhang LM (2008) Lead-free Na0.5K0.5NbO3 piezoelectric ceramics fabricated by spark plasma sintering: annealing effect on electrical properties. J Electroceram 21:251–254CrossRefGoogle Scholar
  85. 85.
    Zhang SB (2002) The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review. J Phys Condens Matter 14:R881–R903CrossRefGoogle Scholar
  86. 86.
    Zhang L, Ren X (2005) In-situ observation of reversible domain switching in aged Mn-doped BaTiO3 single crystals: implication for unified microscopic explanation of ferroelectric Aging. Phys Rev B 71:174108CrossRefGoogle Scholar
  87. 87.
    Zhang BP, Li JF, Wang K, Zhang H (2006) Compositional dependence of piezoelectric properties in NaxK1−xNbO3 lead-free ceramics prepares spark-plasma sintering. J Am Ceram Soc 89:1605–1609CrossRefGoogle Scholar
  88. 88.
    Zhang S, Xia R, Shrout TR (2007) Lead free piezoelectric ceramics vs. PZT. J Electroceram 19:251–257Google Scholar
  89. 89.
    Zhang L, Erdem E, Ren X, Eichel R-A (2008) Reorientation of (MnT′i−V••O )× defect dipoles in acceptor-modified BaTiO3 single crystals: an electron paramagnetic resonance study. Appl Phys Lett 93:202901CrossRefGoogle Scholar
  90. 90.
    Zhen Y, Li JF (2006) Normal sintering of (K, Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure and electrical properties. J Am Ceram Soc 89:3669–3675CrossRefGoogle Scholar
  91. 91.
    Zhen Y, Li JF (2007) Abnormal grain growth and new core-shell structure in (K, Na)NbO3-based lead free piezoelectric ceramics. J Am Ceram Soc 90:3496–3502CrossRefGoogle Scholar
  92. 92.
    Zuo R, Rödel R, Chen R, Li L (2006) Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J Am Ceram Soc 89:2010–2015CrossRefGoogle Scholar
  93. 93.
    Zuo R, Ye C, Fang X, Yue Z, Li L (2008) Processing and piezoelectric properties of (Na0.5K0.5)0.96Li0.04(Ta0.1Nb0.9)1−xCuxO3−3x/2. J Am Ceram Soc 91:914–917CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michael J. Hoffmann
    • 1
  • Hans Kungl
    • 1
  • Jérôme Acker
    • 1
  • Christian Elsässer
    • 2
  • Sabine Körbel
    • 2
  • Pavel Marton
    • 2
  • Rüdiger-A. Eichel
    • 3
  • Ebru Erünal
    • 3
  • Peter Jakes
    • 3
  1. 1.Institute for Ceramics in Mechanical EngineeringKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Fraunhofer-Institut für Werkstoffmechanik IWMFreiburgGermany
  3. 3.Institut für Physikalische Chemie IFreiburgGermany

Personalised recommendations