Proximal Splitting Methods in Signal Processing

  • Patrick L. CombettesEmail author
  • Jean-Christophe Pesquet
Part of the Springer Optimization and Its Applications book series (SOIA, volume 49)


The proximity operator of a convex function is a natural extension of the notion of a projection operator onto a convex set. This tool, which plays a central role in the analysis and the numerical solution of convex optimization problems, has recently been introduced in the arena of inverse problems and, especially, in signal processing, where it has become increasingly important. In this paper, we review the basic properties of proximity operators which are relevant to signal processing and present optimization methods based on these operators. These proximal splitting methods are shown to capture and extend several well-known algorithms in a unifying framework. Applications of proximal methods in signal recovery and synthesis are discussed.


Alternating-direction method of multipliers Backward–backward algorithm Convex optimization Denoising Douglas–Rachford algorithm  Forward–backward algorithm Frame Landweber method Iterative thresholding  Parallel computing Peaceman–Rachford algorithm Proximal algorithm Restoration and reconstruction Sparsity Splitting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Agence Nationale de la Recherche under grants ANR-08-BLAN-0294-02 and ANR-09-EMER-004-03.


  1. 1.
    Acker, F., Prestel, M.A.: Convergence d’un schéma de minimisation alternée. Ann. Fac. Sci. Toulouse V. Sér. Math. 2, 1–9 (1980)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19 2345–2356 (2010)Google Scholar
  3. 3.
    Antoniadis, A., Fan, J.: Regularization of wavelet approximations. J. Amer. Statist. Assoc. 96, 939–967 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Antoniadis, A., Leporini, D., Pesquet, J.C.: Wavelet thresholding for some classes of non-Gaussian noise. Statist. Neerlandica 56, 434–453 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Attouch, H., Soueycatt, M.: Augmented Lagrangian and proximal alternating direction methods of multipliers in Hilbert spaces – applications to games, PDE’s and control. Pacific J. Optim. 5, 17–37 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Aubin, J.P.: Optima and Equilibria – An Introduction to Nonlinear Analysis, 2nd edn. Springer, New York (1998)zbMATHGoogle Scholar
  7. 7.
    Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Computer Vision 63, 85–104 (2005)Google Scholar
  8. 8.
    Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vision 22, 71–88 (2005)MathSciNetGoogle Scholar
  9. 9.
    Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79, 418–443 (1994)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bauschke, H.H., Combettes, P.L.: A Dykstra-like algorithm for two monotone operators. Pacific J. Optim. 4, 383–391 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer (2011)Google Scholar
  14. 14.
    Bauschke, H.H., Combettes, P.L., Reich, S.: The asymptotic behavior of the composition of two resolvents. Nonlinear Anal. 60, 283–301 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)MathSciNetGoogle Scholar
  17. 17.
    Bect, J., Blanc-Féraud, L., Aubert, G., Chambolle, A.: A 1 unified variational framework for image restoration. Lecture Notes in Comput. Sci. 3024, 1–13 (2004)Google Scholar
  18. 18.
    Benvenuto, F., Zanella, R., Zanni, L., Bertero, M.: Nonnegative least-squares image deblurring: improved gradient projection approaches. Inverse Problems 26, 18 (2010). Art. 025004Google Scholar
  19. 19.
    Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont, MA (1997)Google Scholar
  20. 20.
    Bioucas-Dias, J.M., Figueiredo, M.A.T.: A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16, 2992–3004 (2007)MathSciNetGoogle Scholar
  21. 21.
    Bouman, C., Sauer, K.: A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans. Image Process. 2, 296–310 (1993)Google Scholar
  22. 22.
    Boyle, J.P., Dykstra, R.L.: A method for finding projections onto the intersection of convex sets in Hilbert spaces. Lecture Notes in Statist. 37, 28–47 (1986)MathSciNetGoogle Scholar
  23. 23.
    Bredies, K.: A forward-backward splitting algorithm for the minimization of non-smooth convex functionals in Banach space. Inverse Problems 25, 20 (2009). Art. 015005Google Scholar
  24. 24.
    Bredies, K., Lorenz, D.A.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14, 813–837 (2008)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Brègman, L.M.: The method of successive projection for finding a common point of convex sets. Soviet Math. Dokl. 6, 688–692 (1965)zbMATHGoogle Scholar
  26. 26.
    Brézis, H., Lions, P.L.: Produits infinis de résolvantes. Israel J. Math. 29, 329–345 (1978)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Briceño-Arias, L.M., Combettes, P.L.: Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery. Numer. Math. Theory Methods Appl. 2, 485–508 (2009)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Cai, J.F., Chan, R.H., Shen, Z.: A framelet-based image inpainting algorithm. Appl. Comput. Harm. Anal. 24, 131–149 (2008)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Cai, J.F., Chan, R.H., Shen, L., Shen, Z.: Convergence analysis of tight framelet approach for missing data recovery. Adv. Comput. Math. 31, 87–113 (2009)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Cai, J.F., Chan, R.H., Shen, L., Shen, Z.: Simultaneously inpainting in image and transformed domains. Numer. Math. 112, 509–533 (2009)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press, New York (1997)zbMATHGoogle Scholar
  32. 32.
    Chaâri, L., Pesquet, J.C., Ciuciu, P., Benazza-Benyahia, A.: An iterative method for parallel MRI SENSE-based reconstruction in the wavelet domain. Med. Image Anal. 15, 185–201 (2011)Google Scholar
  33. 33.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20, 89–97 (2004)MathSciNetGoogle Scholar
  34. 34.
    Chambolle, A.: Total variation minimization and a class of binary MRF model. Lecture Notes in Comput. Sci. 3757, 136–152 (2005)Google Scholar
  35. 35.
    Chambolle, A., DeVore, R.A., Lee, N.Y., Lucier, B.J.: Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7, 319–335 (1998)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Chan, R.H., Setzer, S., Steidl, G.: Inpainting by flexible Haar-wavelet shrinkage. SIAM J. Imaging Sci. 1, 273–293 (2008)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Chaux, C., Combettes, P.L., Pesquet, J.C., Wajs, V.R.: A variational formulation for frame-based inverse problems. Inverse Problems 23, 1495–1518 (2007)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Chaux, C., Pesquet, J.C., Pustelnik, N.: Nested iterative algorithms for convex constrained image recovery problems. SIAM J. Imaging Sci. 2, 730–762 (2009)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Programming 64, 81–101 (1994)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Chen, G.H.G., Rockafellar, R.T.: Convergence rates in forward-backward splitting. SIAM J. Optim. 7, 421–444 (1997)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Cheney, W., Goldstein, A.A.: Proximity maps for convex sets. Proc. Amer. Math. Soc. 10, 448–450 (1959)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Combettes, P.L.: The foundations of set theoretic estimation. Proc. IEEE 81, 182–208 (1993)Google Scholar
  43. 43.
    Combettes, P.L.: Inconsistent signal feasibility problems: Least-squares solutions in a product space. IEEE Trans. Signal Process. 42, 2955–2966 (1994)Google Scholar
  44. 44.
    Combettes, P.L.: The convex feasibility problem in image recovery. In: P. Hawkes (ed.) Advances in Imaging and Electron Physics, vol. 95, pp. 155–270. Academic, New York (1996)Google Scholar
  45. 45.
    Combettes, P.L.: Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections. IEEE Trans. Image Process. 6, 493–506 (1997)Google Scholar
  46. 46.
    Combettes, P.L.: Convexité et signal. In: Proc. Congrès de Mathématiques Appliquées et Industrielles SMAI’01, pp. 6–16. Pompadour, France (2001)Google Scholar
  47. 47.
    Combettes, P.L.: A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Signal Process. 51, 1771–1782 (2003)MathSciNetGoogle Scholar
  48. 48.
    Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16, 727–748 (2009)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Combettes, P.L., Bondon, P.: Hard-constrained inconsistent signal feasibility problems. IEEE Trans. Signal Process. 47, 2460–2468 (1999)zbMATHGoogle Scholar
  51. 51.
    Combettes, P.L., Dinh Dũng, Vũ, B.C.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18, 373–404 (2010)Google Scholar
  52. 52.
    Combettes, P.L., Pesquet, J.C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Selected Topics Signal Process. 1, 564–574 (2007)Google Scholar
  53. 53.
    Combettes, P.L., Pesquet, J.C.: Proximal thresholding algorithm for minimization over orthonormal bases. SIAM J. Optim. 18, 1351–1376 (2007)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Combettes, P.L., Pesquet, J.C.: A proximal decomposition method for solving convex variational inverse problems. Inverse Problems 24, 27 (2008). Art. 065014Google Scholar
  55. 55.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57, 1413–1457 (2004)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Daubechies, I., Teschke, G., Vese, L.: Iteratively solving linear inverse problems under general convex constraints. Inverse Probl. Imaging 1, 29–46 (2007)MathSciNetzbMATHGoogle Scholar
  58. 58.
    De Mol, C., Defrise, M.: A note on wavelet-based inversion algorithms. Contemp. Math. 313, 85–96 (2002)Google Scholar
  59. 59.
    Didas, S., Setzer, S., Steidl, G.: Combined 2 data and gradient fitting in conjunction with 1 regularization. Adv. Comput. Math. 30, 79–99 (2009)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two or three space variables. Trans. Amer. Math. Soc. 82, 421–439 (1956)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Dunn, J.C.: Convexity, monotonicity, and gradient processes in Hilbert space. J. Math. Anal. Appl. 53, 145–158 (1976)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Dupé, F.X., Fadili, M.J., Starck, J.L.: A proximal iteration for deconvolving Poisson noisy images using sparse representations. IEEE Trans. Image Process. 18, 310–321 (2009)MathSciNetGoogle Scholar
  63. 63.
    Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using L1 fidelity on frame coefficients. J. Math. Imaging Vision 36, 201–226 (2010)Google Scholar
  64. 64.
    Dykstra, R.L.: An algorithm for restricted least squares regression. J. Amer. Stat. Assoc. 78, 837–842 (1983)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Eckstein, J.: Parallel alternating direction multiplier decomposition of convex programs. J. Optim. Theory Appl. 80, 39–62 (1994)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Programming 55, 293–318 (1992)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Eckstein, J., Svaiter, B.F.: General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48, 787–811 (2009)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Eicke, B.: Iteration methods for convexly constrained ill-posed problems in Hilbert space. Numer. Funct. Anal. Optim. 13, 413–429 (1992)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman (2009).
  70. 70.
    Fadili, J., Peyré, G.: Total variation projection with first order schemes. IEEE Trans. Image Process. 20, 657–669 (2011)Google Scholar
  71. 71.
    Figueiredo, M.A.T., Bioucas-Dias, J.M.: Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization. In: Proc. IEEE Workshop Statist. Signal Process. Cardiff, UK (2009).
  72. 72.
    Figueiredo, M.A.T., Nowak, R.D.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12, 906–916 (2003)MathSciNetGoogle Scholar
  73. 73.
    Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Selected Topics Signal Process. 1, 586–597 (2007)Google Scholar
  74. 74.
    Fornasier, M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Problems 23, 2505–2526 (2007)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Fortin, M., Glowinski, R. (eds.): Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam (1983)zbMATHGoogle Scholar
  76. 76.
    Gabay, D.: Applications of the method of multipliers to variational inequalities. In: M. Fortin, R. Glowinski (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, pp. 299–331. North-Holland, Amsterdam (1983)Google Scholar
  77. 77.
    Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite elements approximations. Comput. Math. Appl. 2, 17–40 (1976)zbMATHGoogle Scholar
  78. 78.
    Glowinski, R., Le Tallec, P. (eds.): Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)zbMATHGoogle Scholar
  79. 79.
    Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. RAIRO Anal. Numer. 2, 41–76 (1975)MathSciNetGoogle Scholar
  80. 80.
    Goldburg, M., Marks II, R.J.: Signal synthesis in the presence of an inconsistent set of constraints. IEEE Trans. Circuits Syst. 32, 647–663 (1985)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)zbMATHGoogle Scholar
  83. 83.
    Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 20, 403–419 (1991)Google Scholar
  84. 84.
    Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2, 649–664 (1992)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for l 1-minimization: methodology and convergence. SIAM J. Optim. 19, 1107–1130 (2008)MathSciNetzbMATHGoogle Scholar
  86. 86.
    Herman, G.T.: Fundamentals of Computerized Tomography – Image Reconstruction from Projections, 2nd edn. Springer, London (2009)Google Scholar
  87. 87.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, New York (2001)zbMATHGoogle Scholar
  88. 88.
    Huang, Y., Ng, M.K., Wen, Y.W.: A fast total variation minimization method for image restoration. Multiscale Model. Simul. 7, 774–795 (2008)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Johansson, B., Elfving, T., Kozlovc, V., Censor, Y., Forssén, P.E., Granlund, G.: The application of an oblique-projected Landweber method to a model of supervised learning. Math. Comput. Modelling 43, 892–909 (2006)MathSciNetzbMATHGoogle Scholar
  90. 90.
    Kiwiel, K.C., Łopuch, B.: Surrogate projection methods for finding fixed points of firmly nonexpansive mappings. SIAM J. Optim. 7, 1084–1102 (1997)MathSciNetzbMATHGoogle Scholar
  91. 91.
    Lemaire, B.: The proximal algorithm. In: J.P. Penot (ed.) New Methods in Optimization and Their Industrial Uses, International Series of Numerical Mathematics, vol. 87, pp. 73–87. Birkhäuser, Boston, MA (1989)Google Scholar
  92. 92.
    Lemaire, B.: Itération et approximation. In: Équations aux Dérivées Partielles et Applications, pp. 641–653. Gauthiers-Villars, Paris (1998)Google Scholar
  93. 93.
    Lent, A., Tuy, H.: An iterative method for the extrapolation of band-limited functions. J. Math. Anal. Appl. 83, 554–565 (1981)MathSciNetzbMATHGoogle Scholar
  94. 94.
    Levitin, E.S., Polyak, B.T.: Constrained minimization methods. U.S.S.R. Comput. Math. Math. Phys. 6, 1–50 (1966)Google Scholar
  95. 95.
    Lieutaud, J.: Approximation d’Opérateurs par des Méthodes de Décomposition. Thèse, Université de Paris (1969)Google Scholar
  96. 96.
    Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)MathSciNetzbMATHGoogle Scholar
  97. 97.
    Loris, I., Bertero, M., De Mol, C., Zanella, R., Zanni, L.: Accelerating gradient projection methods for 1-constrained signal recovery by steplength selection rules. Appl. Comput. Harm. Anal. 27, 247–254 (2009)zbMATHGoogle Scholar
  98. 98.
    Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Rech. Opér. 4, 154–158 (1970)MathSciNetGoogle Scholar
  99. 99.
    Mercier, B.: Topics in Finite Element Solution of Elliptic Problems. No. 63 in Lectures on Mathematics. Tata Institute of Fundamental Research, Bombay (1979)Google Scholar
  100. 100.
    Mercier, B.: Inéquations Variationnelles de la Mécanique. No. 80.01 in Publications Mathématiques d’Orsay. Université de Paris-XI, Orsay, France (1980)Google Scholar
  101. 101.
    Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris Sér. A Math. 255, 2897–2899 (1962)MathSciNetzbMATHGoogle Scholar
  102. 102.
    Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)MathSciNetzbMATHGoogle Scholar
  103. 103.
    Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley, New York (1983)zbMATHGoogle Scholar
  104. 104.
    Nesterov, Yu.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)MathSciNetzbMATHGoogle Scholar
  105. 105.
    Nesterov, Yu.: Gradient methods for minimizing composite objective function. CORE discussion paper 2007076, Université Catholique de Louvain, Center for Operations Research and Econometrics (2007)Google Scholar
  106. 106.
    Nesterov, Yu.E.: A method of solving a convex programming problem with convergence rate o(1 ∕ k 2). Soviet Math. Dokl. 27, 372–376 (1983)zbMATHGoogle Scholar
  107. 107.
    Nobakht, R.A., Civanlar, M.R.: Optimal pulse shape design for digital communication systems by projections onto convex sets. IEEE Trans. Communications 43, 2874–2877 (1995)Google Scholar
  108. 108.
    Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)MathSciNetzbMATHGoogle Scholar
  109. 109.
    Pesquet, J.C., Combettes, P.L.: Wavelet synthesis by alternating projections. IEEE Trans. Signal Process. 44, 728–732 (1996)Google Scholar
  110. 110.
    Pierra, G.: Éclatement de contraintes en parallèle pour la minimisation d’une forme quadratique. Lecture Notes in Comput. Sci. 41, 200–218 (1976)Google Scholar
  111. 111.
    Pierra, G.: Decomposition through formalization in a product space. Math. Programming 28, 96–115 (1984)MathSciNetzbMATHGoogle Scholar
  112. 112.
    Potter, L.C., Arun, K.S.: A dual approach to linear inverse problems with convex constraints. SIAM J. Control Optim. 31, 1080–1092 (1993)MathSciNetzbMATHGoogle Scholar
  113. 113.
    Pustelnik, N., Chaux, C., Pesquet, J.C.: Parallel proximal algorithm for image restoration using hybrid regularization. IEEE Trans. Image Process., to appear.
  114. 114.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)zbMATHGoogle Scholar
  115. 115.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)MathSciNetzbMATHGoogle Scholar
  116. 116.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHGoogle Scholar
  117. 117.
    Setzer, S.: Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage. Lecture Notes in Comput. Sci. 5567, 464–476 (2009)Google Scholar
  118. 118.
    Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image Represent. 21, 193–199 (2010)Google Scholar
  119. 119.
    Sibony, M.: Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone. Calcolo 7, 65–183 (1970)MathSciNetzbMATHGoogle Scholar
  120. 120.
    Spingarn, J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10, 247–265 (1983)MathSciNetzbMATHGoogle Scholar
  121. 121.
    Stark, H. (ed.): Image Recovery: Theory and Application. Academic, San Diego, CA (1987)zbMATHGoogle Scholar
  122. 122.
    Stark, H., Yang, Y.: Vector Space Projections : A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics. Wiley, New York (1998)zbMATHGoogle Scholar
  123. 123.
    Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imaging Vision 36, 168–184 (2010)MathSciNetGoogle Scholar
  124. 124.
    Thompson, A.M., Kay, J.: On some Bayesian choices of regularization parameter in image restoration. Inverse Problems 9, 749–761 (1993)MathSciNetzbMATHGoogle Scholar
  125. 125.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc. B 58, 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  126. 126.
    Titterington, D.M.: General structure of regularization procedures in image reconstruction. Astronom. and Astrophys. 144, 381–387 (1985)MathSciNetGoogle Scholar
  127. 127.
    Tropp, J.A.: Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52, 1030–1051 (2006)MathSciNetGoogle Scholar
  128. 128.
    Trussell, H.J., Civanlar, M.R.: The feasible solution in signal restoration. IEEE Trans. Acoust., Speech, Signal Process. 32, 201–212 (1984)Google Scholar
  129. 129.
    Trussell, H.J., Civanlar, M.R.: The Landweber iteration and projection onto convex sets. IEEE Trans. Acoust., Speech, Signal Process. 33, 1632–1634 (1985)Google Scholar
  130. 130.
    Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29, 119–138 (1991)MathSciNetzbMATHGoogle Scholar
  131. 131.
    Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization (2008).
  132. 132.
    Varga, R.S.: Matrix Iterative Analysis, 2nd edn. Springer, New York (2000)zbMATHGoogle Scholar
  133. 133.
    Vese, L.A., Osher, S.J.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vision 20, 7–18 (2004)MathSciNetGoogle Scholar
  134. 134.
    Vonesh, C., Unser, M.: A fast thresholded Landweber algorithm for wavelet-regularized multidimensional deconvolution. IEEE Trans. Image Process. 17, 539–549 (2008)MathSciNetGoogle Scholar
  135. 135.
    Vonesh, C., Unser, M.: A fast multilevel algorithm for wavelet-regularized image restoration. IEEE Trans. Image Process. 18, 509–523 (2009)MathSciNetGoogle Scholar
  136. 136.
    Weiss, P., Aubert, G., Blanc-Féraud, L.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 2047–2080 (2009)MathSciNetzbMATHGoogle Scholar
  137. 137.
    Yamada, I., Ogura, N., Yamashita, Y., Sakaniwa, K.: Quadratic optimization of fixed points of nonexpansive mappings in Hilbert space. Numer. Funct. Anal. Optim. 19, 165–190 (1998)MathSciNetzbMATHGoogle Scholar
  138. 138.
    Youla, D.C.: Generalized image restoration by the method of alternating orthogonal projections. IEEE Trans. Circuits Syst. 25, 694–702 (1978)MathSciNetzbMATHGoogle Scholar
  139. 139.
    Youla, D.C.: Mathematical theory of image restoration by the method of convex projections. In: H. Stark (ed.) Image Recovery: Theory and Application, pp. 29–77. Academic, San Diego, CA (1987)Google Scholar
  140. 140.
    Youla, D.C., Velasco, V.: Extensions of a result on the synthesis of signals in the presence of inconsistent constraints. IEEE Trans. Circuits Syst. 33, 465–468 (1986)MathSciNetzbMATHGoogle Scholar
  141. 141.
    Youla, D.C., Webb, H.: Image restoration by the method of convex projections: Part 1 – theory. IEEE Trans. Medical Imaging 1, 81–94 (1982)Google Scholar
  142. 142.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. I–V. Springer, New York (1985–1990)Google Scholar
  143. 143.
    Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction (2009). SIAM J. Imaging Sci. 3, 253–276 (2010)MathSciNetzbMATHGoogle Scholar
  144. 144.
    Zhu, C.Y.: Asymptotic convergence analysis of the forward-backward splitting algorithm. Math. Oper. Res. 20, 449–464 (1995)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis Lions – UMR CNRS 7598UPMC Université Paris 06ParisFrance

Personalised recommendations