Advertisement

The Mechanisms of Exocytosis in Mast Cells

  • Ulrich Blank
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 716)

Abstract

Upon activation through high affinity IgE receptors (FcεRI), mast cells (MCs) can release up to 100% of their content of preformed mediators stored in cytoplasmic secretory granules by compound exocytosis. This causes Type I immediate hypersensitivity reactions and, in the case of inappropriate activation by allergens, the symptoms of allergy. Recent work has uncovered a central role of SNARE (Soluble N-ethylmaleimide-Sensitive Factor (NSF) Attachment Protein (SNAP) Receptors) proteins in regulating the numerous membrane fusion events during exocytosis. This has defined a series of new molecular actors in MC exocytosis that participate in the regulation of membrane fusion and the connection of the fusion machinery with early signaling events. The purpose of this chapter is to describe these proteins and provide a brief overview on their mechanism of action.

Keywords

Mast Cell Lipid Raft Membrane Fusion Hemopha Gocytic Lymphohistiocytosis Mast Cell Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blank U, Rivera J. The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol 2004; 25(5):266–273.PubMedCrossRefGoogle Scholar
  2. 2.
    Südhof T. The synaptic vesicule cycle: a cascade of protein-protein interactions. Nature 1995; 375:645–653.PubMedCrossRefGoogle Scholar
  3. 3.
    Alvarez de Toledo G, Fernandez J. Compound versus multigranular exocytosis in peritoneal cells. J Gen Physiol 1990; 95:397–402.CrossRefGoogle Scholar
  4. 4.
    Rohlich P. Membrane-associated actin filaments in the cortical cytoplasm of the rat mast cell. Exp Cell Res 1975; 93(2):293–298.PubMedCrossRefGoogle Scholar
  5. 5.
    Pejler G, Abrink M, Ringvall M et al. Mast cell proteases. Adv Immunol 2007; 95:167–255.PubMedCrossRefGoogle Scholar
  6. 6.
    Monck JR, Oberhauser AF, Alvarez de Toledo G et al. Is swelling of the secretory granule matrix the force that dilates the exocytotic fusion pore? Biophys J 1991; 59(1):39–47.PubMedCrossRefGoogle Scholar
  7. 7.
    Crivellato E, Nico B, Mallardi F et al. Piecemeal degranulation as a general secretory mechanism? Anat Rec A Discov Mol Cell Evol Biol 2003; 274(1):778–784.PubMedCrossRefGoogle Scholar
  8. 8.
    Dvorak AM, Hammond ME, Morgan E et al. Evidence for a vesicular transport mechanism in guinea pig basophilic leukocytes. Lab Invest 1980; 42(2):263–276.PubMedGoogle Scholar
  9. 9.
    Williams RM, Webb WW. Single granule pH cycling in antigen-induced mast cell secretion [In Process Citation]. J Cell Sci 2000; 113(Pt 21):3839–3850.PubMedGoogle Scholar
  10. 10.
    Galli S, Dvorak A, Dvorak H. Basophils and Mast Cells: Morphologic Insights into their Biology, Secretory Patterns and Function. Prog Allergy 1984; 34:1–141.PubMedGoogle Scholar
  11. 11.
    Alvarez de Toledo G, Fernandez JM. Patch-clamp measurements reveal multimodal distribution of granule sizes in rat mast cells. J Cell Biol 1990; 110(4): 1033–1039.CrossRefGoogle Scholar
  12. 12.
    Griffiths G. Secretory lysosomes—a special mechanism of regulated secretion in haemopoietic cells. Trends Cell Biology 1996; 6:329–332.CrossRefGoogle Scholar
  13. 13.
    Raposo G, Tenza D, Mecheri S et al. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 1997; 8(12):2631–2645.PubMedGoogle Scholar
  14. 14.
    Sudhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science 2009; 323(5913):474–477.PubMedCrossRefGoogle Scholar
  15. 15.
    Hong W. SNAREs and traffic. Biochim Biophys Acta 2005; 1744(2):120–144.PubMedCrossRefGoogle Scholar
  16. 16.
    Lippert U, Ferrari DM, Jahn R. Endobrevin/VAMP8 mediates exocytotic release of hexosaminidase from rat basophilic leukaemia cells. FEBS Lett 2007; 581(18):3479–3484.PubMedCrossRefGoogle Scholar
  17. 17.
    Puri N, Kruhlak MJ, Whiteheart SW et al. Mast cell degranulation requires N-ethylmaleimide-sensitive factor-mediated SNARE disassembly. J Immunol 2003; 171(10):5345–5352.PubMedGoogle Scholar
  18. 18.
    Guo Z, Turner C, Castle D. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell 1998; 94(4):537–548.PubMedCrossRefGoogle Scholar
  19. 19.
    Paumet F, Le Mao J, Martin S et al. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment. J Immunol 2000;164(11):5850–5857.PubMedGoogle Scholar
  20. 20.
    Sander LE, Frank SP, Bolat S et al. Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells. Eur J Immunol 2008; 38(3):855–863.PubMedCrossRefGoogle Scholar
  21. 21.
    Vaidyanathan VV, Puri N, Roche PA. The last exon of SNAP-23 regulates granule exocytosis from mast cells. J Biol Chem 2001; 276(27):25101–25106.PubMedCrossRefGoogle Scholar
  22. 22.
    Tiwari N, Wang CC, Brochetta C et al. VAMP-8 segregates mast cell-preformed mediator exocytosis from cytokine trafficking pathways. Blood 2008; 111(7):3665–3674.PubMedCrossRefGoogle Scholar
  23. 23.
    Puri N, Roche PA. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc Natl Acad Sci USA 2008; 105(7):2580–2585.PubMedCrossRefGoogle Scholar
  24. 24.
    Baram D, Adachi R, Medalia O et al. Synaptotagmin II negatively regulates Ca2+-triggered exocytosis of lysosomes in mast cells. J Exp Med 1999; 189(10): 1649–1658.PubMedCrossRefGoogle Scholar
  25. 25.
    Tuvim MJ, Mospan AR, Burns KA et al. Synaptotagmin 2 couples mucin granule exocytosis to Ca2+ signaling from endoplasmic reticulum. J Biol Chem 2009; 284(15):9781–9787.PubMedCrossRefGoogle Scholar
  26. 26.
    Miesenbock G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 1998; 394(6689):192–195.PubMedCrossRefGoogle Scholar
  27. 27.
    Hibi T, Hirashima N, Nakanishi M. Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes. Biochem Biophys Res Commun 2000; 271(1):36–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Weber T, Zemelman BV, McNew JA et al. Snarepins—minimal machinery for membrane fusion. Cell 1998; 92(6):759–772.PubMedCrossRefGoogle Scholar
  29. 29.
    Lang T, Jahn R. Core proteins of the secretory machinery. Handb Exp Pharmacol 2008; (184):107–127.PubMedCrossRefGoogle Scholar
  30. 30.
    Kanda H, Tamori Y, Shinoda H et al. Adipocytes from Munc18c-null mice show increased sensitivity to insulin-stimulated GLUT4 externalization. J Clin Invest 2005; 115(2):291–301.PubMedGoogle Scholar
  31. 31.
    Oh E, Spurlin BA, Pessin JE et al. Munc18c heterozygous knockout mice display increased susceptibility for severe glucose intolerance. Diabetes 2005; 54(3):638–647.PubMedCrossRefGoogle Scholar
  32. 32.
    Burgoyne RD, Barclay JW, Ciufo LF et al. The functions of Munc18-1 in regulated exocytosis. Ann N Y Acad Sci 2009; 1152:76–86.PubMedCrossRefGoogle Scholar
  33. 33.
    Shen J, Tareste DC, Paumet F et al. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 2007; 128(1):183–195.PubMedCrossRefGoogle Scholar
  34. 34.
    Ho A, Morishita W, Atasoy D et al. Genetic analysis of Mint/X11 proteins: essential presynaptic functions of a neuronal adaptor protein family. J Neurosci 2006; 26(50): 13089–13101.PubMedCrossRefGoogle Scholar
  35. 35.
    Higashio H, Nishimura N, Ishizaki H et al. Doc2 alpha and Munc13-4 regulate Ca(2+)-dependent secretory lysosome exocytosis in mast cells. J Immunol 2008; 180(7):4774–4784.PubMedGoogle Scholar
  36. 36.
    Fukuda M, Imai A, Nashida T et al. Slp4-a/granuphilin-a interacts with syntaxin-2/3 in a Munc 18-2-dependent manner. J Biol Chem 2005; 280(47):39175–39184.PubMedCrossRefGoogle Scholar
  37. 37.
    Lam PP, Hyvarinen K, Kauppi M et al. A cytosolic splice variant of Cab45 interacts with Munc18b and impacts on amylase secretion by pancreatic acini. Mol Biol Cell 2007; 18(7):2473–2480.PubMedCrossRefGoogle Scholar
  38. 38.
    Martin-Verdeaux S, Pombo I, Iannascoli B et al. Analysis of Munc18-2 compartmentation in mast cells reveals a role for microtubules in granule exocytosis. J Cell Sci 2003; 116:325–334.PubMedCrossRefGoogle Scholar
  39. 39.
    Nigam R, Sepulveda J, Tuvim M et al. Expression and transcriptional regulation of Munc18 isoforms in mast cells. Biochim Biophys Acta 2005; 1728(1–2):77–83.PubMedGoogle Scholar
  40. 40.
    Tadokoro S, Kurimoto T, Nakanishi M et al. Munc18-2 regulates exocytotic membrane fusion positively interacting with syntaxin-3 in RBL-2H3 cells. Mol Immunol 2007; 44(13):3427–3433.PubMedCrossRefGoogle Scholar
  41. 41.
    Cote M, Menager MM, Burgess A et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest 2009.Google Scholar
  42. 42.
    zur Stadt U, Rohr J, Seifert W et al. Familial hemophagocytic lymphohistiocytosis type 5(FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet 2009; 85(4):482–492.PubMedCrossRefGoogle Scholar
  43. 43.
    Brochetta C, Vita F, Tiwari N et al. Involvement of Munc18 isoforms in the regulation of granule exocytosis in neutrophils. Biochim Biophys Acta 2008; 1783(10):1781–1791.PubMedCrossRefGoogle Scholar
  44. 44.
    Rizo J, Rosenmund C. Synaptic vesicle fusion. Nat Struct Mol Biol 2008; 15(7):665–674.PubMedCrossRefGoogle Scholar
  45. 45.
    Goishi K, Mizuno K, Nakanishi H et al. Involvement of Rab27 in antigen-induced histamine release from rat basophilic leukemia 2H3 cells. Biochem Biophys Res Commun 2004; 324(1):294–301.PubMedCrossRefGoogle Scholar
  46. 46.
    Neeft M, Wieffer M, de Jong AS et al. Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells. Mol Biol Cell 2005; 16(2):731–741.PubMedCrossRefGoogle Scholar
  47. 47.
    Feldmann J, Callebaut I, Raposo G et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 2003; 115(4):461–473.PubMedCrossRefGoogle Scholar
  48. 48.
    Menager MM, Menasche G, Romao M et al. Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4. Nat Immunol 2007; 8(3):257–267.PubMedCrossRefGoogle Scholar
  49. 49.
    Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10(8):513–525.PubMedCrossRefGoogle Scholar
  50. 50.
    Roa M, Paumet F, Lemao J et al. Involvement of the ras-like GTPase rab3d in RBL-2H3 mast cell exocytosis following stimulation via high affinity IgE receptors (Fc epsilon RI). J Immunol 1997; 159(6):2815–2823.PubMedGoogle Scholar
  51. 51.
    Tuvim MJ, Adachi R, Chocano JF et al. Rab3D, a small GTPase, is localized on mast cell secretory granules and translocates to the plasma membrane upon exocytosis. Am J Respir Cell Mol Biol 1999; 20(1):79–89.PubMedGoogle Scholar
  52. 52.
    Smith J, Thompson N, Armstrong J et al. Rat Basophilic Leukaemia (RBL) cells overexpressing rab3a have a reversible block in antigen-stimulated exocytosis. Biochem J 1997; 323:321–328.PubMedGoogle Scholar
  53. 53.
    Riedel D, Antonin W, Fernandez-Chacon R et al. Rab3D is not required for exocrine exocytosis but for maintenance of normally sized secretory granules. Mol Cell Biol 2002; 22(18):6487–6497.PubMedCrossRefGoogle Scholar
  54. 54.
    Mizuno K, Tolmachova T, Ushakov DS et al. Rab27b regulates mast cell granule dynamics and secretion. Traffic 2007; 8(7):883–892.PubMedCrossRefGoogle Scholar
  55. 55.
    Fukuda M. Versatile Role of Rab27 in Membrane Trafficking: Focus on the Rab27 Effector Families. J Biochem (Tokyo) 2005; 137(1):9–16.Google Scholar
  56. 56.
    Wu XS, Rao K, Zhang H et al. Identification of an organelle receptor for myosin-Va. Nat Cell Biol 2002; 4(4):271–278.PubMedCrossRefGoogle Scholar
  57. 57.
    Maximov A, Tang J, Yang X et al. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 2009; 323(5913):516–521.PubMedCrossRefGoogle Scholar
  58. 58.
    Tadokoro S, Nakanishi M, Hirashima N. Complexin II facilitates exocytotic release in mast cells by enhancing Ca2+ sensitivity of the fusion process. J Cell Sci 2005; 118(Pt 10):2239–2246.PubMedCrossRefGoogle Scholar
  59. 59.
    Baram D, Mekori YA, Sagi-Eisenberg R. Synaptotagmin regulates mast cell functions. Immunol Rev 2001; 179:25–34.PubMedCrossRefGoogle Scholar
  60. 60.
    Grimberg E, Peng Z, Hammel I et al. Synaptotagmin III is a critical factor for the formation of the perinuclear endocytic recycling compartment and determination of secretory granules size. J Cell Sci 2003; 116(Pt 1):145–154.PubMedCrossRefGoogle Scholar
  61. 61.
    Haberman Y, Grimberg E, Fukuda M et al. Synaptotagmin IX, a possible linker between the perinuclear endocytic recycling compartment and the microtubules. J Cell Sci 2003; 116(Pt 21):4307–4318.PubMedCrossRefGoogle Scholar
  62. 62.
    Haberman Y, Ziv I, Gorzalczany Y et al. Classical protein kinase C(s) regulates targeting of synaptotagmin IX to the endocytic recycling compartment. J Cell Sci 2005; 118(Pt 8):1641–1649.PubMedCrossRefGoogle Scholar
  63. 63.
    Fernandez-Chacon R, de Toledo GA, Hammer RE et al. Analysis of SCAMP1 function in secretory vesicle exocytosis by means of gene targeting in mice. J Biol Chem 1999; 274(46):32551–32554.PubMedCrossRefGoogle Scholar
  64. 64.
    Castle JD, Guo Z, Liu L. Function of the t-SNARE SNAP-23 and secretory carrier membrane proteins (SCAMPs) in exocytosis in mast cells. Mol Immunol 2002; 38(16–18):1337–1340.PubMedCrossRefGoogle Scholar
  65. 65.
    Guo Z, Liu L, Cafiso D et al. Perturbation of a very late step of regulated exocytosis by a secretory carrier membrane protein (SCAMP2)-derived peptide. J Biol Chem 2002; 277(38):35357–35363.PubMedCrossRefGoogle Scholar
  66. 66.
    Liu L, Guo Z, Tieu Q et al. Role of secretory carrier membrane protein SCAMP2 in granule exocytosis. Mol Biol Cell 2002; 13(12):4266–4278.PubMedCrossRefGoogle Scholar
  67. 67.
    Peng Z, Beaven MA. An essential role for phospholipase D in the activation of protein kinase C and degranulation in mast cells. J Immunol 2005; 174(9):5201–5208.PubMedGoogle Scholar
  68. 68.
    Ichikawa S, Walde P. Phospholipase D-mediated aggregation, fusion and precipitation of phospholipid vesicles. Langmuir 2004; 20(3):941–949.PubMedCrossRefGoogle Scholar
  69. 69.
    Koffer A, Tatham P, Gomperts B. Changes in the state of Actin duringthe exocytotic reaction of permeabilized rat mast cell. The Journal of Cell Biology 1990; 111:919–927.PubMedCrossRefGoogle Scholar
  70. 70.
    Oliver C, Sahara N, Kitani S et al. Binding of monoclonal antibody AA4 to gangliosides on rat basophilic leukemia cells produces changes similar to those seen with Fc epsilon receptor activation. J Cell Biol 1992; 116(3):635–646.PubMedCrossRefGoogle Scholar
  71. 71.
    Nielsen EH. A filamentous network surrounding secretory granules from mast cells. J Cell Sci 1990; 96(Pt 1):43–46.PubMedGoogle Scholar
  72. 72.
    Pendleton A, Koffer A. Effects of latrunculin reveal requirements forthe actin cytoskeleton during secretion from mast cells. Cell Motil Cytoskeleton 2001; 48(1):37–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Deng Z, Zink T, Chen HY et al. Impact of actin rearrangement and degranulation on the membrane structure of primary mast cells: a combined atomic force and laser scanning confocal microscopy investigation. Biophys J 2009; 96(4): 1629–1639.PubMedCrossRefGoogle Scholar
  74. 74.
    Norman J, Price L, Ridley A et al. The small GTP-binding proteins, Rac and Rho, regulate cytoskeletal organization and exocytosis in mast cells by parallel pathways. Mol Biol Cell 1996; 7:1429–1442.PubMedGoogle Scholar
  75. 75.
    Hong-Geller E, Holowka D, Siraganian RP et al. Activated Cdc42/Rac reconstitutes Fcvarepsilon RI-mediated Ca2+mobilization and degranulation in mutant RBL mast cells. Proc Natl Acad Sci USA 2001; 98(3):1154–1159.PubMedCrossRefGoogle Scholar
  76. 76.
    Nishida K, Yamasaki S, Ito Y et al. Fc{epsilon}RI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J Cell Biol 2005; 170(1):115–126.PubMedCrossRefGoogle Scholar
  77. 77.
    Smith AJ, Pfeiffer JR, Zhang J et al. Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells. Traffic 2003; 4(5):302–312.PubMedCrossRefGoogle Scholar
  78. 78.
    Clark RH, Stinchcombe JC, Day A et al. Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat Immunol 2003; 4(11):1111–1120.PubMedCrossRefGoogle Scholar
  79. 79.
    Pombo I, Martin-Verdeaux S, Iannascoli B et al. IgE receptor type I-dependent regulation of a Rab3D-associated kinase. Apossible link in the calcium-dependent assembly of SNARE complexes. J Biol Chem 2001; 12:12.Google Scholar
  80. 80.
    Turner KM, Burgoyne RD, Morgan A. Protein phosphorylation and the regulation of synaptic membrane traffic. Trends Neurosci 1999; 22(10):459–464.PubMedCrossRefGoogle Scholar
  81. 81.
    Ozawa K, Yamada K, Kazanietz MG et al. Different isozymes of protein kinase C mediate feedback inhibition of phospholipase C and stimulatory signals for exocytosis in rat RBL-2H3 cells. J Biol Chem 1993; 268(4):2280–2283.PubMedGoogle Scholar
  82. 82.
    Nechushtan H, Leitges M, Cohen C et al. Inhibition of degranulation and interleukin-6 production in mast cells derived from mice deficient in protein kinase Cbeta. Blood 2000; 95(5): 1752–1757.PubMedGoogle Scholar
  83. 83.
    Leitges M, Gimborn K, Elis W et al. Protein kinase C-delta is a negative regulator of antigen-induced mast cell degranulation. Mol Cell Biol 2002; 22(12):3970–3980.PubMedCrossRefGoogle Scholar
  84. 84.
    Ludowyke RI, Scurr LL, McNally CM. Calcium ionophore-induced secretion from mast cells correlates with myosin light chain phosphorylation by protein kinase C. J Immunol 1996; 157(11):5130–5138.PubMedGoogle Scholar
  85. 85.
    Fujita Y, Sasaki T, Fukui K et al. Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein Kinase C. The Journal of Biological Chemistry 1996; 271:7265–7268.PubMedCrossRefGoogle Scholar
  86. 86.
    Reed GL, Houng AK, Fitzgerald ML. Human platelets contain SNARE proteins and a Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin activation: implications for platelet secretion. Blood 1999; 93(8):2617–2626.PubMedGoogle Scholar
  87. 87.
    Chung SH, Polgar J, Reed GL. Protein kinase C phosphorylation of syntaxin 4 in thrombin-activated human platelets. J Biol Chem 2000; 275(33):25286–25291.PubMedCrossRefGoogle Scholar
  88. 88.
    Hepp R, Puri N, Hohenstein AC et al. Phosphorylation of SNAP-23 regulates exocytosis from mast cells. J Biol Chem 2005; 280(8):6610–6620.PubMedCrossRefGoogle Scholar
  89. 89.
    Suzuki K, Verma IM. Phosphorylation of SNAP-23 by IkappaB kinase 2 regulates mast cell degranulation. Cell 2008; 134(3):485–495.PubMedCrossRefGoogle Scholar
  90. 90.
    Cabaniols JP, Ravichandran V, Roche PA. Phosphorylation of SNAP-23 by the novel kinase SNAK regulates t-SNARE complex assembly. Mol Biol Cell 1999; 10(12):4033–4041.PubMedGoogle Scholar
  91. 91.
    Marash M, Gerst JE. Phosphorylation of the autoinhibitory domain of the Sso t-SNAREs promotes binding of the Vsml SNARE regulator in yeast. Mol Biol Cell 2003; 14(8):3114–3125.PubMedCrossRefGoogle Scholar
  92. 92.
    Ludowyke RI, Holst J, Mudge LM et al. Transient translocation and activation of protein phosphatase 2A during mast cell secretion. J Biol Chem 2000; 275(9):6144–6152.PubMedCrossRefGoogle Scholar
  93. 93.
    Holst J, Sim AT, Ludowyke RI. Protein phosphatases 1 and 2A transiently associate with myosin during the peak rate of secretion from mast cells. Mol Biol Cell 2002; 13(3):1083–1098.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang X, Huynh H, Gjorloff-Wingren A et al. Enlargement of secretory vesicles by protein tyrosine phosphatase PTP-MEG2 in rat basophilic leukemia mast cells and Jurkat T-cells. J Immunol 2002; 168(9):4612–4619.PubMedGoogle Scholar
  95. 95.
    Huynh H, Bottini N, Williams S et al. Control of vesicle fusion by a tyrosine phosphatase. Nat Cell Biol 2004; 6(9):831–839.PubMedCrossRefGoogle Scholar
  96. 96.
    Foreman JC, Mongar JL, Gomperts BD. Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process. Nature 1973; 245(5423):249–251.PubMedCrossRefGoogle Scholar
  97. 97.
    Chin D, Means AR. Calmodulin: a prototypical calcium sensor. Trends Cell Biol 2000; 10(8):322–328.PubMedCrossRefGoogle Scholar
  98. 98.
    Peachell PT, Pearce FL. Effect of calmodulin inhibitors on histamine secretion from mast cells. Agents Actions 1985; 16(1–2):43–44.PubMedCrossRefGoogle Scholar
  99. 99.
    Sullivan R, Burnham M, Torok K et al. Calmodulin regulates the disassembly of cortical F-actin in mast cells but is not required for secretion. Cell Calcium 2000; 28(1):33–46.PubMedCrossRefGoogle Scholar
  100. 100.
    Choi OH, Adelstein RS, Beaven MA. Secretion from rat basophilic RBL-2H3 cells is associated with diphosphorylation of myosin light chains by myosin light chain kinase as well as phosphorylation by protein kinase C. J Biol Chem 1994; 269(1):536–541.PubMedGoogle Scholar
  101. 101.
    Buxton DB, Adelstein RS. Calcium-dependent threonine phosphorylation of nonmuscle myosin in stimulated RBL-2H3 mast cells. J Biol Chem 2000; 275(44):34772–34779.PubMedCrossRefGoogle Scholar
  102. 102.
    Risinger C, Bennett MK. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms. Journal of Neurochemistry 1999; 72(2):614–624.PubMedCrossRefGoogle Scholar
  103. 103.
    Quetglas S, Iborra C, Sasakawa N et al. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J 2002; 21(15):3970–3979.PubMedCrossRefGoogle Scholar
  104. 104.
    Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1(1):31–39.PubMedCrossRefGoogle Scholar
  105. 105.
    Mukherjee S, Maxfield FR. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 2000; 1(3):203–211.PubMedCrossRefGoogle Scholar
  106. 106.
    Lafont F, Verkade P, Galli T et al. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc Natl Acad Sci USA 1999; 96(7):3734–3738.PubMedCrossRefGoogle Scholar
  107. 107.
    Lang T, Bruns D, Wenzel D et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 2001; 20(9):2202–2213.PubMedCrossRefGoogle Scholar
  108. 108.
    Chamberlain LH, Burgoyne RD, Gould GW. SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci USA 2001; 98(10):5619–5624.PubMedCrossRefGoogle Scholar
  109. 109.
    Pombo I, Rivera J, Blank U. Munc18-2/syntaxin3 complexes are spatially separated from syntaxin3-containing SNARE complexes. FEBS Lett 2003; 550(1–3):144–148.PubMedCrossRefGoogle Scholar
  110. 110.
    Puri N, Roche PA. Ternary SNARE complexes are enriched in lipid rafts during mast cell exocytosis. Traffic 2006; 7(11):1482–1494.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2011

Authors and Affiliations

  • Ulrich Blank
    • 1
    • 2
  1. 1.Inserm U699ParisFrance
  2. 2.Faculté de Médecine Paris Diderot—Site Xavier BichatUniversité Paris 7ParisFrance

Personalised recommendations