Part of the The Frontiers Collection book series (FRONTCOLL)


Entropy is the physical measure of disorder. According to the Second Law of Thermodynamics it grows whenever something happens in the world. This shows up in the room of a playing child, on the desk of a working scientist, and in all natural and technical energy conversion processes. The growth of entropy determines the Arrow of Time. It prevents a Perpetuum Mobile of the Second Kind, which would be a cyclically operating machine that does nothing other than perform physical work and cool down a heat reservoir, such as the environment. All attempts to construct such a machine and establish an energetic fool’s paradise have failed and will fail. Furthermore, entropy production, inevitably coupled to energy conversion, is associated with exergy destruction and the emission of heat and particles. Model calculations of the Heat Equivalents of Noxious Substances show how sufficiently large energy inputs into pollution control processes, such as denitrification, desulfurization, carbon dioxide capture and storage (CCS), and nuclear waste disposal, can convert the emissions of material pollutants into heat emissions. The latter, however, accelerate the approach to the Heat Barrier, beyond which climate changes are expected even without the Anthropogenic Greenhouse Effect (AGE). The physics, cause, and consequences of the AGE are explained.


Entropy Production Waste Heat Heat Engine Heat Emission Ocean Thermal Energy Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bergmann, L., Schäfer, C.: Lehrbuch der Experimentalphysik, Bd. 7, Erde und Planeten, 2nd Edn., (W. Raith ed.). Walter de Gruyter, Berlin (2001)Google Scholar
  2. 2.
    Hamburger Bildungsserver: Ewärmung des Weltozeans 1955–2003. http://lbs.hh.schule.de/welcome.phtml?unten=/klima/klimafolgen/meeresspiegel/sterisch.html
  3. 3.
    Hägele, P., Evers, P.: Freche Verse, physikalisch. Vieweg + Teubner, Wiesbaden (1995)Google Scholar
  4. 4.
    Reif, F.: Fundamentals of statistical and thermal physics. McGraw-Hill, New York (1965)Google Scholar
  5. 5.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of Superconductivity. Phys. Rev. 108, 1175–1204 (1957)MathSciNetMATHGoogle Scholar
  6. 6.
    Landau, L. D., Lifschitz, E.M.: Lehrbuch der Theoretischen Physik V, Statistische Physik Teil 1, 6th Edn. Akademie-Verlag, Berlin (1984)Google Scholar
  7. 7.
    Ruelle, D.: Zufall und Chaos. Springer, Berlin, Heidelberg (1992)MATHCrossRefGoogle Scholar
  8. 8.
    Stahl, A.: Entropiebilanzen und Rohstoffverbrauch. Naturwissenschaften 83, 459, 1996ADSCrossRefGoogle Scholar
  9. 9.
    Lebowitz, J. L.: Emergent Phenomena—Entropy and phase transitions in macroscopic systems. Physik Journal 6, 41–46 (2007)Google Scholar
  10. 10.
    Zeh, H.D.: The Direction of Time (2nd Ed.). Springer, Berlin, Heidelberg, New York (1992)MATHGoogle Scholar
  11. 11.
    Kraus, K.: Über die Richtung der Zeit. Phys. Blätter, 29, 1–19 (1973); see also: Becker, H.: Theorie der Wärme, pp. 104–106. Springer, Berlin (1975)Google Scholar
  12. 12.
    Kohelet (The Preacher, Ecclesiastes), 1,2–1,11Google Scholar
  13. 13.
    Georgescu-Roegen, N.: Energy and Economic Myths. Pergamon, New York (1976)Google Scholar
  14. 14.
    Georgescu-Roegen, N.: The entropy law and the economic process in retrospect. East. Econ. J. 12, 3–23 (1986)Google Scholar
  15. 15.
    Letters to the Editor: Recycling of Matter. Ecol. Econ. 9, 191–196 (1994)Google Scholar
  16. 16.
    Georgescu-Roegen, N.: The Entropy Law and the Economic Process. Harvard University Press, Cambridge (1971)Google Scholar
  17. 17.
    van Gool, W., Bruggink J.J.C. (eds.): Energy and Time in the Economic and Physical Sciences. North-Holland, Amsterdam (1985)Google Scholar
  18. 18.
    Faber, M., Niemes, H., Stephan, G.: Entropy, Environment, and Resources. Springer, Berlin (1987)CrossRefGoogle Scholar
  19. 19.
    Faber, M., Proops, J.: Evolution, Time, Production, and the Environment (2nd Ed.). Springer, Berlin (1994)Google Scholar
  20. 20.
    Daly, H. E.: On Nicholas Georgescu-Roegen’s contributions to economics: an obituary essay. Ecol. Econ. 13, 149–154 (1995)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Schönwiese, C.-D.: Klimatologie. Ulmer UTB, 3rd Edn., Stuttgart (2008)Google Scholar
  23. 23.
    Schönwiese, C.-D., Rapp, J., Meyhöfer, S., Denhard, M., Beine, S.: Das “Treibhaus”–Problem: Emissionen und Klimaeffekte. Eine aktuelle wissenschaftliche Bestandsaufnahme. Berichte des Instituts für Meteorologie und Geophysik der Universität Frankfurt. No. 96, (1994)Google Scholar
  24. 24.
    Schönwiese, C.-D.: Klimatologie. Ulmer UTB, 2nd Edn., Stuttgart (2003)Google Scholar
  25. 25.
    Schönwiese, C.-D., Walter, A., Brinckmann, S.: Statistical assessments of anthropogenic and natural global climate forcing. An update. Meteorol. Z. 19 (1), 003–010 (2010)CrossRefGoogle Scholar
  26. 26.
    Science 7 May 2010, Vol. 328. no 5979, pp. 689-690; http://www.sciencemag.org/cgi/content/full/328/5979/689
  27. 27.
    German Bundestag (Ed.): Protecting the Earth’s Atmosphere. An International Challenge. Deutscher Bundestag, Referat Öffentlichkeitsarbeit, Bonn (1989)Google Scholar
  28. 28.
    Bundesanstalt für Geowissenschaften und Rohstoffe: Emissionsdatenbank, http://www.bgr.bund.de/cln_006/nn_333908/DE/Themen/Klimaentwicklung/Bilder/co2_emiss1850_2000_g.html
  29. 29.
    Mauch, W.: Kumulierter Energieaufwand—Instrument für nachhaltige Energieversorgung. Forschungstelle-für-Energiewirtschaft Schriftenreihe, Band 23 (1999); combined with data from Öko-Institut Darmstadt, 2006.Google Scholar
  30. 30.
    Brohan, P., Kennedy, J.J., Harris, I., Tett, S.F.B., Jones, P.D.: Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res. 111, D12106 (2006) doi: 10.1029/2005/JD006548 with updates (until 2009) from http://www.cru.uea.ac.uk/cru/data/temperature/
  31. 31.
    Dritter Bericht der Enquete Kommission Vorsorge zum Schutz der Erdatmosphäre, p. 855. Deutscher Bundestag, Drucksache 11/8030, Bonn (1990)Google Scholar
  32. 32.
    International Economic Platform for Renewable Energies (IWR), Press release of 10 August 2009; http://www.renewable-energy-industry.com/business/press-releases/newsdetail.php?changeLang=de_DE&newsid=3185
  33. 33.
    Tollefson, J.: Missed 2050 climate targets will reduce long-term options. Nature, 11 January 2010, doi:10.1038/news.2010.6Google Scholar
  34. 34.
    Kenney, W. F.: Energy Conservation in the Process Industries. Academic Press, Orlando (1984)Google Scholar
  35. 35.
    Groscurth, H.-M., Kümmel, R.: Thermoeconomics and CO2-Emissions. Energy—Intntl. J. 15, 73–80 (1990)Google Scholar
  36. 36.
    Blok, K.: Introduction to Energy Analysis. Techne Press, Amsterdam (2006)Google Scholar
  37. 37.
    Schüssler, U., Kümmel, R.: Schadstoff-Wärmeäquivalente. ENERGIE, 42, 40–49 (1990)Google Scholar
  38. 38.
    Kümmel, R., Schüssler, U.: Heat equivalents of noxious substances: a pollution indicator for environmental accounting. Ecol. Econ. 3, 139–156 (1991)CrossRefGoogle Scholar
  39. 39.
    von Buttlar, H.: Umweltprobleme. Phys. Blätter 31, 145–155 (1975)Google Scholar
  40. 40.
    Kümmel, R., Schüssler, U.: Valuation of Environmental Cost by Heat Emissions from Pollution Control. In: Hohmeyer, O., Ottinger, R.L. (eds.) External Environmental Costs of Electric Power, pp. 147–158. Springer, Berlin (1991). (The misprints that sneaked into this article during final production are absent in [38].)Google Scholar
  41. 41.
    German Physical Society and German Meteorological Society: The threat of man made global changes in climate. Phys. Blätter 43, 347–349 (1989).Google Scholar
  42. 42.
    Steinberg, M., Cheng, H.C., Horn, F.: A system study for the removal, recovery and disposal of carbon dioxide from fossil fuel power plants in the US. BNL-35666 Informal Report, Brookhaven National Laboratory, Upton (1984)Google Scholar
  43. 43.
    Fricke, J., Schüssler, U., Kümmel, R.: CO2–Entsorgung. Phys. Unserer Zeit 20, 56–81 (1989), and references therein.Google Scholar
  44. 44.
    Hendriks, C. A., Blok, K., Turkenburg, W.C.: The Recovery of Carbon Dioxide from Power Plants. In: Okken, P.A., Swart, R.J., Zwerver, S. (eds.) Climate and Energy, pp. 125–142. Kluwer, Dordrecht (1989)Google Scholar
  45. 45.
    Okken, P.A., Swart, R.J., Zwerver, S. (eds.): Climate and Energy. Kluwer, Dordrecht (1989)Google Scholar
  46. 46.
    Kümmel, R., Groscurth, H.-M., Schüssler, U.: Thermoeconomic Analysis of Technical Greenhouse Warming Mitigation. Int. J. Hydrogen Energy 17, 293–298 (1992), and references therein.Google Scholar
  47. 47.
    Schüssler, U., Kümmel, R.: Carbon Dioxide Removal from Fossil Fuel Power Plants by Refrigeration under Pressure. In: Jackson, W.D. (ed.) Proc. 24th Intersociety Energy Conversion Engineering Conference, pp. 1789–1794. IEEE, New York (1989)CrossRefGoogle Scholar
  48. 48.
  49. 49.
    Kolm, H.: Mass driver up-date. L-5 News 5, 10–12 (1980).Google Scholar
  50. 50.
    O’Neill, G. K.: The High Frontier. William Morrow & Co., New York (1977)Google Scholar
  51. 51.
    Kluge, G., Neugebauer, G: Grundlagen der Thermodynamik. Spektrum Fachverlag, Heidelberg (1993)Google Scholar
  52. 52.
    Kammer, H.-W., Schwabe, K.: Thermodynamik irreversibler Prozesse. Physik-Verlag Weinheim (1985)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and AstrophysicsUniversity of WürzburgWürzburgGermany

Personalised recommendations