The Contractile and Neurohormonal Roles of Phospholamban in Heart Failure

  • Rajesh Dash
  • Evangelia G. KraniasEmail author
Part of the Progress in Experimental Cardiology book series (PREC, volume 5)


Heart failure is a down-spiraling syndrome of neurohormonal imbalance and hemodynamic instability, in which impaired cardiac function has been linked to perturbations in subcellular calcium handling. Phospholamban (PLB) is a phosphoprotein that inhibits cardiac muscle relaxation by lowering the apparent affinity of the sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2) for Ca2+. Major determinants of phospholamban s regulatory activity are the relative PLB/SERCA2 ratio and phospholamban’s phosphorylation status, both of which are altered in failing human hearts. PLB impairs myocardial calcium handling and observed perturbations of PLB levels and/or activity in human heart failure may contribute to depressed contractility. Therapeutic implications for PLB are intriguing, as PLB’s activity and levels are significantly influenced by specific neurohormonal systems.

Key words

Sarcoplasmic Reticulum Neuroendocrine Calcium Therapeutics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith WM. 1985. Epidemiology of congestive heart failure. Am J Cardiol 55(2):3A–8A.PubMedCrossRefGoogle Scholar
  2. 2.
    Francis GS, Cohn JN. 1990. Heart failure: mechanisms of cardiac and vascular dysfunction and the rationale for pharmacologic intervention. Faseb J 4(13):3068–3075.PubMedGoogle Scholar
  3. 3.
    Bristow MR. 1998. Why does the myocardium fail?. Insights from basic science. Lancet 352Suppl 1:SI8–SI14.PubMedCrossRefGoogle Scholar
  4. 4.
    Tada M, Kirchberger MA, Katz AM. 1975. Phosphorylation of a 22000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′: 5′-monophosphate-dependent protein kinase. J Biol Chem 250(7):2640–2647.PubMedGoogle Scholar
  5. 5.
    Tada M, Yamada M, Kadoma M, Inui M, Ohmori F. 1982. Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phospholamban. Mol Cell Biochem 46(2):73–95.PubMedCrossRefGoogle Scholar
  6. 6.
    Tada M, Katz AM. 1982. Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Annu Rev Physiol 44:401–423.PubMedCrossRefGoogle Scholar
  7. 7.
    Tada M, Inui M, Yamada M, Kadoma M, Kuzuya T, Abe H, Kakiuchi S. 1983. Effects of phospholamban phosphorylation catalyzed by adenosine 3′:5′-monophosphate-and calmodulin-dependent protein kinases on calcium transport ATPase of cardiac sarcoplasmic reticulum. J Mol Cell Cardiol 15(5):335–346.PubMedCrossRefGoogle Scholar
  8. 8.
    Tada M, Kirchberger MA, Repke DI, Katz AM. 1974. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′.5′-monophosphate-dependent protein kinase. J Biol Chem 249(19):6174–6180.PubMedGoogle Scholar
  9. 9.
    Simmerman HK, Collins JH, Theibert JL, Wegener AD, Jones LR. 1986. Sequence analysis of phospholamban Identification of phosphorylation sites and two major structural domains. J Biol Chem 261(28):13333–13341.PubMedGoogle Scholar
  10. 10.
    Inui M, Kadoma M, Tada M. 1985. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J Biol Chem 260(6):3708–3715.PubMedGoogle Scholar
  11. 11.
    Jones LR, Simmerman HK, Wilson WW, Gurd FR, Wegener AD. 1985. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J Biol Chem 260(12):7721–7730.PubMedGoogle Scholar
  12. 12.
    Fujii J, Kadoma M, Tada M, Toda H, Sakiyama F. 1986. Characterization of structural unit of phospholamban by amino acid sequencing and electrophoretic analysis. Biochem Biophys Res Commun 138(3):1044–1050.PubMedCrossRefGoogle Scholar
  13. 13.
    Fujii J, Ueno A, Kitano K, Tanaka S, Kadoma M, Tada M. 1987. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban. J Clin Invest 79(l):301–304.PubMedCrossRefGoogle Scholar
  14. 14.
    Simmerman HK, Kobayashi YM, Autry JM, Jones LR. 1996. A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. J Biol Chem 271(10): 5941–5946.PubMedCrossRefGoogle Scholar
  15. 15.
    Arkin IT, Rothman M, Ludlam CF, Aimoto S, Engelman DM, Rothschild KJ, Smith SO. 1995. Structural model of the phospholamban ion channel complex in phospholipid membranes. J Mol Biol 248(4):824–834.PubMedCrossRefGoogle Scholar
  16. 16.
    Mortishire-Smith RJ, Pitzenberger SM, Burke CJ, Middaugh CR, Garsky VM, Johnson RG. 1995. Solution structure of the cytoplasmic domain of phopholamban: phosphorylation leads to a local perturbation in secondary structure. Biochemistry 34(23):7603–7613.PubMedCrossRefGoogle Scholar
  17. 17.
    Simmerman HK, Jones LR. 1998. Phospholamban: protein structure mechanism of action, and role in cardiac function. Physiol Rev 78(4):921–947.PubMedGoogle Scholar
  18. 18.
    Otsu K, Fujii J, Periasamy M, Difilippantonio M, Uppender M, Ward DC, MacLennan DH. 1993. Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes. Genomics 17(2): 507–509.PubMedCrossRefGoogle Scholar
  19. 19.
    Toyofuku T, Zak R. 1991. Characterization of cDNA and genomic sequences encoding a chicken phospholamban. J Biol Chem 266(9):5375–5383.PubMedGoogle Scholar
  20. 20.
    Ganim JR, Luo W, Ponniah S, Grupp I, Kim HW, Ferguson DG, Kadambi V, Neumann JC, Doetschman T, Kranias EG. 1992. Mouse phospholamban gene expression during development in vivo and in vitro. Circ Res 71(5): 1021–1030.PubMedCrossRefGoogle Scholar
  21. 21.
    Bers DM. 1991. Excitation-contraction coupling and cardiac contractile force. Kluwers Academic Publishers 258.Google Scholar
  22. 22.
    Kranias EG, Mandel F, Wang T, Schwartz A. 1980. Mechanism of the stimulation of calcium ion dependent adenosine triphosphatase of cardiac sarcoplasmic reticulum by adenosine 3′5′-monophosphate dependent protein kinase. Biochemistry 19(23):5434–5439.PubMedCrossRefGoogle Scholar
  23. 23.
    Tada M, Ohmori F, Yamada M, Abe H. 1979. Mechanism of the stimulation of Ca 2+ -dependent ATPase of cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase Role of the 22000-dalton protein. J Biol Chem 254(2):319–326.PubMedGoogle Scholar
  24. 24.
    Tada M, Yamada M, Ohmori F, Kuzuya T, Inui M, Abe H. 1980. Transient state kinetic studies of Ca 2+ -dependent ATPase and calcium transport by cardiac sarcoplasmic reticulum. Effect of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of phospholamban. J Biol Chem 255(5):1985–1992.PubMedGoogle Scholar
  25. 25.
    James P, Inui M, Tada M, Chiesi M, Carafoli E. 1989. Nature and site of phospholamban regulation of the Ca 2+ pump of sarcoplasmic reticulum. Nature 342(6245):90–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Cantilina T, Sagara Y, Inesi G, Jones LR. 1993. Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca 2+. J Biol Chem 268(23):17018–17025.PubMedGoogle Scholar
  27. 27.
    Toyofuku T, Curotto Kurzydlowski K, Narayanan N, MacLennan DH. 1994. Identification of Ser38 as the site in cardiac sarcoplasmic reticulum Ca(2+)-ATPase that is phosphorylated by Ca2+ /calmodulin-dependent protein kinase. J Biol Chem 269(42):26492–26496.PubMedGoogle Scholar
  28. 28.
    Toyofuku T, Kurzydlowski K, Tada M, MacLennan DH. 1993. Identification of regions in the Ca(2+)-ATPase of sarcoplasmic reticulum that affect functional association with phospholamban. J Biol Chem 268(4):2809–2815.PubMedGoogle Scholar
  29. 29.
    Toyofuku T, Kurzydlowski K, Tada M, MacLennan DH. 1994. Amino acids Lys-Asp-Asp-Lys-Pro-Val402 in the Ca(2+)-ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban. J Biol Chem 269(37):22929–22932.PubMedGoogle Scholar
  30. 30.
    Kim HW, Steenaart NA, Ferguson DG, Kranias EG. 1990. Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2(+)-ATPase with phospholamban in phospholipid vesicles. J Biol Chem 265(3):1702–1709.PubMedGoogle Scholar
  31. 31.
    Chiesi M, Schwaller R. 1989. Involvement of electrostatic phenomena in phospholamban-induced stimulation of Ca uptake into cardiac sarcoplasmic reticulum. FEBS Lett 244(l):241–244.PubMedCrossRefGoogle Scholar
  32. 32.
    Chiesi M, Schwaller R. 1994. Reversal of phospholamban-induced inhibition of cardiac sarcoplasmic reticulum Ca(2+)-ATPase by tannin. Biochem Biophys Res Commun 202(3). 1668–1673.PubMedCrossRefGoogle Scholar
  33. 33.
    Xu ZC, Kirchberger MA. 1989. Modulation by polyelectrolytes of canine cardiac microsomal calcium uptake and the possible relationship to phospholamban. J Biol Chem 264(28): 16644–16651.PubMedGoogle Scholar
  34. 34.
    McKenna E, Smith JS, Coll KE, Mazack EK, Mayer EJ, Antanavage J, Wiedmann RT, Johnson Jr RG. 1996. Dissociation of phospholamban regulation of cardiac sarcoplasmic reticulum Ca 2+ ATPase by quercetin.) Biol Chem 271(40): 24517–24525.CrossRefGoogle Scholar
  35. 35.
    Levine BA, Patchell VB, Sharma P, Gao Y, Bigelow DJ, Yao Q, Goh S, Colyer J, Drago GA, Perry SV. 1999. Sites on the cytoplasmic region of phospholamban involved in interaction with the calcium-activated ATPase of the sarcoplasmic reticulum. Eur J Biochem 264(3):905–913.PubMedCrossRefGoogle Scholar
  36. 36.
    Jones LR, Field LJ. 1993. Residues 2-25 of phospholamban are insufficient to inhibit Ca 2+ transport ATPase of cardiac sarcoplasmic reticulum. J Biol Chem 268(16):11486–11488.PubMedGoogle Scholar
  37. 37.
    Sasaki T, Inui M, Kimura Y, Kuzuya T, Tada M. 1992. Molecular mechanism of regulation of Ca 2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca 2+ pump ATPase. J Biol Chem 267(3): 1674–1679.PubMedGoogle Scholar
  38. 38.
    Starling AP, Sharma RP, East JM, Lee AG. 1996. The effect of N-terminal acetylation on Ca(2+)-ATPase inhibition by phospholamban. Biochem Biophys Res Commun 226(2):352–355.PubMedCrossRefGoogle Scholar
  39. 39.
    Hughes G, East JM, Lee AG. 1994. The hydrophilic domain of phospholamban inhibits the Ca 2+ transport step of the Ca(2+)-ATPase. Biochem J 303(Pt 2):511–516.PubMedGoogle Scholar
  40. 40.
    Hughes G, Starling AP, Sharma RP, East JM, Lee AG. 1996. An investigation of the mechanism of inhibition of the Ca(2+)-ATPase by phospholamban. Biochem J 318 (Pt 3):973–979.PubMedGoogle Scholar
  41. 41.
    Reddy LG, Jones LR, Cala SE, O’Brian JJ, Tatulian SA, Stokes DL. 1995. Functional reconstitution of recombinant phospholamban with rabbit skeletal Ca(2+)-ATPase. J Biol Chem 270(16):9390–9397.PubMedCrossRefGoogle Scholar
  42. 42.
    Kimura Y, Kurzydlowski K, Tada M, MacLennan DH. 1996. Phospholamban regulates the Ca 2+ -ATPase through intramembrane interactions. J Biol Chem 271(36):21726–21731.PubMedCrossRefGoogle Scholar
  43. 43.
    Asahi M, Kimura Y, Kurzydlowski K, Tada M, MacLennan DH. 1999. Transmembrane helix M6 in sarco(endo)plasmic reticulum Ca(2+)-ATPase forms a functional interaction site with phospholamban Evidence for physical interactions at other sites. J Biol Chem 274(46): 32855–32862.PubMedCrossRefGoogle Scholar
  44. 44.
    Toyofuku T, Kurzydlowski K, Tada M, MacLennan DH. 1994. Amino acids Glu2 to Ile18 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem 269(4):3088–3094.PubMedGoogle Scholar
  45. 45.
    Tatulian SA, Chen B, Li J, Negash S, Middaugh CR, Bigelow DJ, Squier TC. 2002. The inhibitory action of phospholamban involves stabilization of alpha-helices within the Ca-ATPase. Biochemistry 41(3):741–751.PubMedCrossRefGoogle Scholar
  46. 46.
    Kimura Y, Kurzydlowski K, Tada M, MacLennan DH. 1997. Phospholamban inhibitory function is activated by depolymerization. J Biol Chem 272(24):15061–15064.PubMedCrossRefGoogle Scholar
  47. 47.
    Cornea RL, Jones LR, Autry JM, Thomas DD. 1997. Mutation and phosphorylation change the oligomeric structure of phospholamban in lipid bilayers. Biochemistry 36(10): 2960–2967.PubMedCrossRefGoogle Scholar
  48. 48.
    Zvaritch E, Backx PH, Jirik F, Kimura Y, de Leon S, Schmidt AG, Hoit BD, Lester JW, Kranias EG, MacLennan DH. 2000. The transgenic expression of highly inhibitory monomeric forms of phospholamban in mouse heart impairs cardiac contractility. J Biol Chem 275(20): 14985–14991.PubMedCrossRefGoogle Scholar
  49. 49.
    Kirchberger MA, Tada M, Katz AM. 1974. Adenosine 3′:5′-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J Biol Chem 249(19):6166–6173.PubMedGoogle Scholar
  50. 50.
    La Raia PJ, Morkin E. 1974. Phosphorylation-dephosphorylation of cardiac microsomes: a possible mecha nism for control of calcium uptake by cyclic AMP. Recent Adv Stud Cardiac Struct Metab 4:417–426.PubMedGoogle Scholar
  51. 51.
    Wegener AD, Simmerman HK, Lindemann JP, Jones LR. 1989. Phospholamban phosphorylation in intact ventricles Phosphorylation of serine 16 and threonine 11 in response to beta-adrenergic stimulation [pub-lished erratum appears in J Biol Chem 1989 Sep 15;264(26):15738]. J Biol Chem 264(19):11468–11474.PubMedGoogle Scholar
  52. 52.
    Talosi L, Edes I, Kranias EG. 1993. Intracellular mechanisms mediating reversal of beta-adrenergic stimulation in intact beating hearts. Am J Physiol 264(3 Pt 2):H791–H797.PubMedGoogle Scholar
  53. 53.
    Movsesian MA, Nishikawa M, Adelstein RS. 1984. Phosphorylation of phospholamban by calcium-activated phospholipid-dependent protein kinase. Stimulation of cardiac sarcoplasmic reticulum calcium uptake. J Biol Chem 259(13):8029–8032.PubMedGoogle Scholar
  54. 54.
    Hicks MJ, Shigekawa M, Katz AM. 1979. Mechanism by which cyclic adenosine 3′: 5′-monophosphate-dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum. Circ Res 44(3):384–391.PubMedCrossRefGoogle Scholar
  55. 55.
    Kranias EG. 1985. Regulation of Ca 2+ transport by cyclic 3′5′-AMP-dependent and calcium-calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum. Biochim Biophys Acta 844(2): 193–199.PubMedCrossRefGoogle Scholar
  56. 56.
    Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E. 1999. Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31(3):479–491.PubMedCrossRefGoogle Scholar
  57. 57.
    Antipenko AY, Spielman AI, Sassaroli M, Kirchberger MA. 1997. Comparison of the kinetic effects of phospholamban phosphorylation and anti-phospholamban monoclonal antibody on the calcium pump in purified cardiac sarcoplasmic reticulum membranes. Biochemistry 36(42): 12903–12910.PubMedCrossRefGoogle Scholar
  58. 58.
    Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG. 1994. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 75(3):401–409.PubMedCrossRefGoogle Scholar
  59. 59.
    Wolska BM, Stojanovic MO, Luo W, Kranias EG, Solaro RJ. 1996. Effect of ablation of phospholamban on dynamics of cardiac myocyte contraction and intracellular Ca 2+. Am J Physiol 271(1 Pt 1):C391–C397.PubMedGoogle Scholar
  60. 60.
    Kiss E, Edes I, Sato Y, Luo W, Liggett SB, Kranias EG. 1997. beta-Adrenergic regulation of cAMP and protein phosphorylation in phospholamban-knockout mouse hearts. Am J Physiol 272(2 Pt 2):H785–H790.PubMedGoogle Scholar
  61. 61.
    Kranias EG, Di Salvo J. 1986. A phospholamban protein phosphatase activity associated with cardiac sarcoplasmic reticulum. J Biol Chem 261(22): 10029–10032.PubMedGoogle Scholar
  62. 62.
    Steenaart NA, Ganim JR, Di Salvo J, Kranias EG. 1992. The phospholamban phosphatase associated with cardiac sarcoplasmic reticulum is a type 1 enzyme. Arch Biochem Biophys 293(1): 17–24.PubMedCrossRefGoogle Scholar
  63. 63.
    Chu S, aEGK. 2000. Functional approaches to discover the role of threonine-17 phospholamban phosphorylation. Journal of Biological Chemistry IN PRESS.Google Scholar
  64. 64.
    Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dorn GW, 2nd, Walsh RA, Kranias EG. 1996. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 97(2):533–539.PubMedCrossRefGoogle Scholar
  65. 65.
    Dash R, Kadambi V, Schmidt AG, Tepe NM, Biniakiewicz D, Gerst MJ, Canning AM, Abraham WT, Hoit BD, Liggett SB, Lorenz JN, Dorn GW, 2nd, Kranias EG. 2001. Interactions between phospholamban and beta-adrenergic drive may lead to cardiomyopathy and early mortality. Circulation 103(6):889–896.PubMedCrossRefGoogle Scholar
  66. 66.
    Luo W, Wolska BM, Grupp IL, Harrer JM, Haghighi K, Ferguson DG, Slack JP, Grupp G, Doetschman T, Solaro RJ, Kranias EG. 1996. Phospholamban gene dosage effects in the mammalian heart. Circ Res 78(5):839–847.PubMedCrossRefGoogle Scholar
  67. 67.
    Slack JP, Grupp IL, Dash R, Holder D, Schmidt A, Gerst MJ, Tamura T, Tilgmann C, James PF, Johnson R, Gerdes AM, Kranias EG. 2001. The enhanced contractility of the phospholamban-deficient mouse heart persists with aging. J Mol Cell Cardiol 33(5): 1031–1040.CrossRefGoogle Scholar
  68. 68.
    Hajjar RJ, Schmidt U, Kang JX, Matsui T, Rosenzweig A. 1997. Adenoviral gene transfer of phospholamban in isolated rat cardiomyocytes. Rescue effects by concomitant gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circ Res 81(2): 145–153.PubMedCrossRefGoogle Scholar
  69. 69.
    Brittsan AG, Carr AN, Schmidt AG, Kranias EG. 2000. Maximal inhibition of SERCA2 Ca(2+) affinity by phospholamban in transgenic hearts overexpressing a non-phosphorylatable form of phospholamban. J Biol Chem 275(16):12129–12135.PubMedCrossRefGoogle Scholar
  70. 70.
    Beuckelmann DJ, Nabauer M, Erdmann E. 1992. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure [see comments]. Circulation 85(3): 1046–1055.PubMedCrossRefGoogle Scholar
  71. 71.
    Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP. 1987. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61(l):70–76.PubMedCrossRefGoogle Scholar
  72. 72.
    Limas CJ, Olivari MT, Benditt DG, Almquist A. 1987. Altered calcium uptake by the sarcoplasmic reticulum following cardiac transplantation in humans. Can J Cardiol 3(5):215–219.PubMedGoogle Scholar
  73. 73.
    Munch G, Bolck B, Hoischen S, Brixius K, Bloch W, Reuter H, Schwinger RH. 1998. Unchanged protein expression of sarcoplasmic reticulum Ca 2+ -ATPase, phospholamban, and calsequestrin in terminally failing human myocardium. J Mol Med 76(6):434–441.PubMedCrossRefGoogle Scholar
  74. 74.
    Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H. 1994. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 75(3):434–442.PubMedCrossRefGoogle Scholar
  75. 75.
    Schwinger RH, Bohm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E. 1995. Unchanged protein levels of SERCA II and phospholamban but reduced Ca 2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92(11):3220–3228.PubMedCrossRefGoogle Scholar
  76. 76.
    Flesch M, Schwinger RH, Schnabel P, Schiffer F, van Gelder I, Bavendiek U, Sudkamp M, Kuhn-Regnier F, Böhm M. 1996. Sarcoplasmic reticulum Ca 2+ ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J Mol Med 74(6):321–332.PubMedCrossRefGoogle Scholar
  77. 77.
    Kiss E, Ball NA, Kranias EG, Walsh RA. 1995. Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca(2+)-ATPase protein levels Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ Res 77(4):759–764.PubMedCrossRefGoogle Scholar
  78. 78.
    Matsui H, MacLennan DH, Alpert NR, Periasamy M. 1995. Sarcoplasmic reticulum gene expression in pressure overload-induced cardiac hypertrophy in rabbit. Am J Physiol 268(1 Pt 1):C252–C258.PubMedGoogle Scholar
  79. 79.
    Levitsky D, de la Bastie D, Schwartz K, Lompre AM. 1991. Ca(2+)-ATPase and function of sarcoplasmic reticulum during cardiac hypertrophy. Am J Physiol 261(4 Suppl):23–26.PubMedGoogle Scholar
  80. 80.
    de la Bastie D, Levitsky D, Rappaport L, Mercadier JJ, Marotte F, Wisnewsky C, Brovkovich V, Schwartz K, Lompre AM. 1990. Function of the sarcoplasmic reticulum and expression of its Ca2(+)-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 66(2):554–564.PubMedCrossRefGoogle Scholar
  81. 81.
    Zarain-Herzberg A, Afzal N, Elimban V, Dhalla NS. 1996. Decreased expression of cardiac sarcoplasmic reticulum Ca(2+)-pump ATPase in congestive heart failure due to myocardial infarction. Mol Cell Biochem 163-164:285–90.CrossRefGoogle Scholar
  82. 82.
    Qi M, Shannon TR, Euler DE, Bers DM, Samarel AM. 1997. Downregulation of sarcoplasmic reticulum Ca(2+)-ATPase during progression of left ventricular hypertrophy. Am J Physiol 272(5 Pt 2):H2416–H2424.PubMedGoogle Scholar
  83. 83.
    Afzal N, Dhalla NS. 1992. Differential changes in left and right ventricular SR calcium transport in congestive heart failure. Am J Physiol 262(3 Pt 2):H868–H874.PubMedGoogle Scholar
  84. 84.
    Cory CR, McCutcheon LJ, O’Grady M, Pang AW, Geiger JD, O’Brien PJ. 1993. Compensatory downregulation of myocardial Ca channel in SR from dogs with heart failure. Am J Physiol 264(3 Pt 2):H926–H937.PubMedGoogle Scholar
  85. 85.
    Linck B, Boknik P, Eschenhagen T, Müller FU, Neumann J, Nose M, Jones LR, Schmitz W, Scholz H. 1996. Messenger RNA expression and immunological quantification of phospholamban and SR-Ca(2+)-ATPase in failing and nonfailing human hearts. Cardiovasc Res 31(4):625–632.PubMedCrossRefGoogle Scholar
  86. 86.
    Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G, et al. 1995. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92(4):778–784.PubMedCrossRefGoogle Scholar
  87. 87.
    Schillinger W, Meyer M, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G. 1996. Unaltered ryanodine receptor protein levels in ischemic cardiomyopathy. Mol Cell Biochem 160-161:297–302.PubMedCrossRefGoogle Scholar
  88. 88.
    Movsesian MA, Karimi M, Green K, Jones LR. 1994. Ca(2+)-transporting ATPase phospholamban and calsequestrin levels in nonfailing and failing human myocardium. Circulation 90(2):653–657.PubMedCrossRefGoogle Scholar
  89. 89.
    Tsutsui H, Ishibashi Y, Imanaka-Yoshida K, Yamamoto S, Yoshida T, Sugimachi M, Urabe Y, Takeshita A. 1997. Alterations in sarcoplasmic reticulum calcium-storing proteins in pressure-overload cardiac hypertrophy. Am J Physiol 272(1 Pt 2):H168–H175.PubMedGoogle Scholar
  90. 90.
    Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuss G, Just H, Holtz J, Drexler H. 1994. Gene expression of the cardiac Na(+)-Ca 2+ exchanger in end-stage human heart failure. Circ Res 75(3):443–453.PubMedCrossRefGoogle Scholar
  91. 91.
    DiPaola NR, Sweet WE, Stull LB, Francis GS, Moravec CS. 2001. Beta-adrenergic receptors and calcium cycling proteins in non-failing, hypertrophied and failing human hearts: transition from hypertrophy to failure. J Mol Cell Cardiol 33(6):1283–1295.PubMedCrossRefGoogle Scholar
  92. 92.
    Dash R, Frank KF, Carr AN, Moravec CS, Kranias EG. 2001. Gender influences on sarcoplasmic reticulum ca(2+)-handling in failing human myocardium. J Mol Cell Cardiol 33(7):1345–1353.PubMedCrossRefGoogle Scholar
  93. 93.
    Sande JB, Sjaastad I, Hoen IB, Bokenes J, Tonnessen T, Holt E, Lunde PK, Christensen G. 2002. Reduced level of serine(16) phosphorylated phospholamban in the failing rat myocardium: a major contributor to reduced SERCA2 activity. Cardiovasc Res 53(2):382–391.PubMedCrossRefGoogle Scholar
  94. 94.
    Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, Minami K, Just H, Hasenfuss G. 1995. Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 92(5): 1169–1178.PubMedCrossRefGoogle Scholar
  95. 95.
    Kimura Y, Inui M, Kadoma M, KijimaY, Sasaki T, Tada M. 1991. Effects of monoclonal antibody against phospholamban on calcium pump ATPase of cardiac sarcoplasmic reticulum, J Mol Cell Cardiol 23(11):1223–1230.PubMedCrossRefGoogle Scholar
  96. 96.
    Rapundalo ST. 1998. Cardiac protein phosphorylation: functional and pathophysiological correlates, Cardiovasc Res 38(3):559–588.PubMedCrossRefGoogle Scholar
  97. 97.
    Koss KL, Kranias EG. 1996. Phospholamban: a prominent regulator of myocardial contractility. Circ Res 79(6):1059–1063.PubMedCrossRefGoogle Scholar
  98. 98.
    Kim SJ, Yatani A, Vatner DE, Yamamoto S, Ishikawa Y, Wagner TE, Shannon RP, Kim YK, Takagi G, Asai K, Homcy CJ, Vatner SE 1999. Differential regulation of inotropy and lusitropy in overexpressed Gsalpha myocytes through cAMP and Ca2+ channel pathways. J Clin Invest 103(7): 1089–1097.PubMedCrossRefGoogle Scholar
  99. 99.
    Rockman HA, Hamilton RA, Jones LR, Milano CA, Mao L, Lefkowitz RJ. 1996. Enhanced myocardial relaxation in vivo in transgenic mice overexpressing the beta2-adrenergic receptor is associated with reduced phospholamban protein. J Clin Invest 97(7):1618–1623.PubMedCrossRefGoogle Scholar
  100. 100.
    Klein I, Ojamaa K. 2001. Thyroid hormone and the cardiovascular system. N Engl J Med 344(7):501–509.PubMedCrossRefGoogle Scholar
  101. 101.
    Kiss E, Brittsan AG, Edes I, Grupp IL, Grupp G, Kranias EG. 1998. Thyroid hormone-induced alterations in phospholamban-deficient mouse hearts. Circ Res 83(6):608–613.PubMedCrossRefGoogle Scholar
  102. 102.
    Fisher DJ, Phillips S, McQuinn T. 1996. Regulation of SERCA 2 expression by thyroid hormone in cultured chick embryo cardiomyocytes. Am J Physiol 270(2 Pt 2):H638–H644.PubMedGoogle Scholar
  103. 103.
    Moriscot AS, Sayen MR, Hartong R, Wu P, Dillmann WH. 1997. Transcription of the rat sarcoplasmic reticulum Ca2+ adenosine triphosphatase gene is increased by 353′-triiodothyronine receptor isoform-specific interactions with the myocyte-specific enhancer factor-2a. Endocrinology 138(l):26–32.PubMedCrossRefGoogle Scholar
  104. 104.
    Chang KC, Figueredo VM, Schreur JH, Kariya K, Weiner MW, Simpson PC, Camacho SA. 1997. Thyroid hormone improves function and Ca2+ handling in pressure overload hypertrophy. Association with increased sarcoplasmic reticulum Ca2+-ATPase and alpha-myosin heavy chain in rat hearts. J Clin Invest 100(7):1742–1749.PubMedCrossRefGoogle Scholar
  105. 105.
    Zhong Y, Ahmed S, Grupp IL, Matlib MA. 2001. Altered SR protein expression associated with contractile dysfunction in diabetic rat hearts. Am J Physiol Heart Circ Physiol 281(3):H1137–H1147.PubMedGoogle Scholar
  106. 106.
    Netticadan T, Temsah RM, Kent A. Elimban V, Dhalla NS. 2001. Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes 50(9):2133–2138.PubMedCrossRefGoogle Scholar
  107. 107.
    Haghighi K, Schmidt AG, Hoit BD, Brittsan AG. Yatani A, Lester JW, Zhai J, Kimura Y, Dorn GW, 2nd, MacLennan DH, Kranias EG. 2001. Superinhibition of sarcoplasmic reticulum function by phospholamban induces cardiac contractile failure. J Biol Chem 276(26):24145–24152.PubMedCrossRefGoogle Scholar
  108. 108.
    Minamisawa S, Hoshijima M, Chu G, Ward CA, Frank K, Gu Y, Martone ME, Wang Y, Ross Jr J, Kranias EG, Giles WR, Chien KR. 1999. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99(3):313–322.PubMedCrossRefGoogle Scholar
  109. 109.
    He H, Meyer M, Martin JL, McDonough PM, Ho P, Lou X, Lew WY, Hilal-Dandan R, Dillmann WH. 1999. Effects of mutant and antisense RNA of phospholamban on SR Ca(2+)-ATPase activity and cardiac myocyte contractility. Circulation 100(9):974–980.PubMedCrossRefGoogle Scholar
  110. 110.
    Eizema K, Fechner H, Bezstarosti K, Schneider-Rasp S, van der Laarse A, Wang H, Schultheiss HP, Poller WC, Lamers JM. 2000. Adenovirus-based phospholamban antisense expression as a novel approach to improve cardiac contractile dysfunction: comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter. Circulation 101(18):2193–2199.PubMedCrossRefGoogle Scholar
  111. 111.
    Sussman MA, Welch S, Gude N, Khoury PR, Daniels SR, Kirkpatrick D, Walsh RA, Price RL, Lim HW, Molkentin JD. 1999. Pathogenesis of dilated cardiomyopathy: molecular, structural, and population analyses in tropomodulin-overexpressing transgenic mice. Am J Pathol 155(6):2101–2113.PubMedCrossRefGoogle Scholar
  112. 112.
    Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ. 2000. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 97(2):793–798.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnati OHUSA

Personalised recommendations