Integrating New Tests of Sperm Genetic Integrity into Semen Analysis: Breakout Group Discussion

  • Sally D. Perreault
  • R. John Aitken
  • H. W. Gordon Baker
  • Donald P. Evenson
  • Gabor Huszar
  • D. Stewart Irvine
  • Ian D. Morris
  • Rebecca A. Morris
  • Wendie A. Robbins
  • Denny Sakkas
  • Marcello Spano
  • Andrew J. Wyrobek
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 518)


The First International Conference on Male-Mediated Developmental Toxicity, held in September 1992, reported that the spermatozoon can bring genetic damage into the oocyte at fertilization and thereby contribute to subsequent abnormal pregnancy outcomes (Olshan and Mattison, 1994). At that time, laboratory tests for genetic defects in sperm were at an early stage of development and were relatively untested in the clinic and the field. A breakout group at that meeting discussed the need for improved sperm biomarkers of adverse reproductive effects and concluded that sensitive, reliable, and practical methods


Human Spermatozoon Semen Quality Sperm Chromatin Sperm Chromatin Structure Assay Breakout Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, I.D., Bishop, J., Lowe, X., Schmid, T.E., Schriever-Schwcmmer, G, Xu, W., and Wyrobek, A.J., 1996, Spontaneous rates of sex chromosomal aneuploidies in sperm and offspring of mice: a validation of the detection of aneuploidy sperm by fluorescence in situ hybridization, Mutal Res. 372:259–268.CrossRefGoogle Scholar
  2. Ahmadi, A. and Ng, S.C., 1999a, Developmental capacity of damaged spermatozoa, Hum Reprod. 14:2279–2285.PubMedCrossRefGoogle Scholar
  3. Ahmadi, A. and Ng, S.C., 1999b, Fertilizing ability of DNA-damaged spermatozoa. JExp Zool. 284:696–704.CrossRefGoogle Scholar
  4. Aravindan, C.R., Bjordahl, J., Jost, L.K., and Evenson, D.P., 1997, Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single-cell electrophoresis. Exp Cell Res. 236:231–237.PubMedCrossRefGoogle Scholar
  5. Aitken, R.J., 1999, The Amoroso Lecture: The human spermatozoon — a cell in crisis? J Reprod Fertil. 115: 1–7.PubMedCrossRefGoogle Scholar
  6. Balhorn, R., Reed, S., and Tanphaichitr, N., 1988, Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males, Experientia. 44:52–55.PubMedCrossRefGoogle Scholar
  7. Baumgartner, A., Schmid, T.E., Maaerz, H.K., Adlcr, I.-D., Taraok, A., and Nuesse, M., 2001a, Automated evaluation of frequencies of aneuploid sperm by laser-scanning cytometry (LSC), Cytometry. 44:156–160.PubMedCrossRefGoogle Scholar
  8. Baumgartner, A., Schmid, T.E., Schutz, C.G., and Adler, I.-D., 2001b, Detection of aneuploidy in rodent and human sperm by multicolor FISH after chronic exposure to diazepam, Mutat Res. 490:11–19.PubMedCrossRefGoogle Scholar
  9. Baumgartner, A., Van Hummelen, P., Lowe, X.R., Adler, I.-D., and Wyrobek, A.J., 1999, Numerical and structural chromosomal abnormalities detected in human sperm with a combination of multicolor FISH assays. Environ Mol Mutagen. 33:49–58.PubMedCrossRefGoogle Scholar
  10. Belokopytova, I.A., Kostyleva, E.I., Tomilin, A.N., and Vorob’ev, V.l., 1993, Human male infertility may be due to a decrease of the protamine P2 content in sperm chromatin, Mol Reprod Dev. 34:53–57.PubMedCrossRefGoogle Scholar
  11. Bizzaro, D., Manicardi, G.C., Bianchi, P.G., Bianchi, U., Mariethoz, E., and Sakkas, D., 1998, In-situ competition between protamine and fiuorochromes for sperm DNA, Mol Hum Reprod. 4:127–132PubMedCrossRefGoogle Scholar
  12. Bonde, J.P., Joffe, M., Apostoli, P., Dale, A., Kiss, P., Spano, M., Giwercman, A., Bisanti, L., Porru, S., Vanhoorne, M., Comhaire, F., and Zschiesche, W., 2001, Sperm count and chromatin structure in men exposed to inorganic lead; lowest adverse effect levels, Occup Environ Med. 59:234–242.CrossRefGoogle Scholar
  13. Braun, R.E., 2001, Packaging paternal genome with protamine, Nature Genet. 28:10–12.PubMedGoogle Scholar
  14. Chatterjee, R., Haines, G.A., Perera, D.M., Goldstone, A. and Morris, I.D., 2000, Testicular and sperm DNA damage after treatment with fludarabine for chronic lymphocytic leukaemia. Hum Reprod. 15:762–766.PubMedCrossRefGoogle Scholar
  15. Cho, C., Willis, W.D., Goulding, E.H., Jung-Ha, H., Choi, Y-C, Hecht, N.B., and Eddy, M.M., 2001, Haploinsufficiency of protamine-1 or-2 causes infertility in mice, Nature Genet. 28:82–86.PubMedGoogle Scholar
  16. De Yebra, L., Ballesca, J.L., Vanrell, J.A., Bassas, L., and Oliva, R., 1993, Complete selective absence of protamine P2 in humans. J Biol Chem. 268:10553–10557.PubMedGoogle Scholar
  17. Donnelly, E.T., Steele, E.K., McClure, N., and Lewis, S.E., 2001, Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod. 16:1191–1199.PubMedCrossRefGoogle Scholar
  18. Erenpreiss, J., Bars, J., Lipatnikova, V., Erenpreisa, J., and Zalkalns, J., 2001, Comparative study of cytochemical tests for sperm chromatin integrity, J Androl. 22:45–53.PubMedGoogle Scholar
  19. ESHRE (European Society of Human Reproduction and Embryology) Andrology Special Interest Group, 1996, Consensus workshop on advanced diagnostic andrology techniques, Hum Reprod. 11:1463–1479.CrossRefGoogle Scholar
  20. Evenson, D.P., 1999, Alterations and damage of sperm chromatin structure and early embryonic failure, in: Towards Reproductive Certainty: Fertility and Genetics Beyond 1999, R. Jannsen and D. Mortimer, eds., Parthenon Publishing Group Ltdl, New York, p. 313.Google Scholar
  21. Evenson, D.P., Jost, L.K., Marshall, D., Zinaman, M.J., Clegg, E., Purvis, K., Deangelis, P., and Claussen, O.P., 1999, Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Fertil Steril. 14:1039–1049.Google Scholar
  22. Evenson, D.P., Jost, L.K., Corzett, M., Balhorn, R., 2000, Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl. 21:739–746.PubMedGoogle Scholar
  23. Evenson, D.P., Larson, K., and Jost, L.K., 2002, The sperm chromatin structure assay (SCSA™): clinical use for detecting sperm DNA fragmentation related to male infertility and comparisons with other techniques. Andrology Lab Comer. J Androl. 23:25–43.PubMedGoogle Scholar
  24. Gorczyca, W., Traganos, F., Jesionowska, H., and Darzynkiewicz, Z., 1993, Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 207:202–205.PubMedCrossRefGoogle Scholar
  25. Haines, G.A., Hendry, J.H., Daniel, C.P., and Morris, I.D., 2001, Increased levels of Comet-detected spermatozoal DNA damage following in vivo isotopic-or X-irradiation of spermatogonia. Mutat Res. 495:21–32.PubMedCrossRefGoogle Scholar
  26. Haines, G., Marples, B., Daniel, P. and Morris, I, 1998, DNA damage in human and mouse spermatozoa after in vitro-irradiation assessed by the comet assay, in: Reproductive Toxicology, ed, J. del Mazo, Plenum Press, New York.Google Scholar
  27. Hammadeh, M.E., Zeginiadov, T., Rosenbaum, P., Georg, T., Schmidt, W., and Strehler, E., 2001, Predictive value of sperm chromatin condensation (aniline blue staining) in the assessment of male fertility, Arch Androl. 46:99–104.Google Scholar
  28. Hassold, T.J., 1998, Nondysjunction in the human male, in: Meiosis and Gametogenesis, M.A. Handel, ed., Academic Press, New York, p. 383.Google Scholar
  29. Hughes, C.M., Lewis, S.E.M., McKelvey-Martin, J., and Thompson,.W., 1996, A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay, Mol Hum Reprod. 2: 613–619.PubMedCrossRefGoogle Scholar
  30. Huszar, G. and Vigue, L.., 1993, Incomplete development of human spermatozoa is associated with increased creatine phosphokinase concentrations and abnormal head morphology, Mol Reprod Dev. 34:292–298.PubMedCrossRefGoogle Scholar
  31. Huszar, G., Sbracia, M., Vigue, L., Miller, D., and Shur, B., 1997, Sperm plasma membrane remodeling during spermiogenetic maturation in men: relationship among plasma membrane B-1,4,-galactosyltransferase, cytoplasmic creatine phosphokinase, and creatine phosphokinase isoform ratios, Biol Reprod. 56:1020–1024.PubMedCrossRefGoogle Scholar
  32. Huszar, G., Stone, K., Dix, D., and Vigue, L., 2000, Putative creatine kinase M-isoform in human sperm is identified as the 70-kilodalton heat shock protein HspA2, Biol Reprod. 63:925–932.PubMedCrossRefGoogle Scholar
  33. Irvine, D.S., Twigg, J.P., Gordon, EX., Fulton, N., Milne, P.A., and Aitken RJ., 2000, DNA integrity in human spermatozoa: relationships with semen quality, J Androl. 21:33–44.PubMedGoogle Scholar
  34. Kolstad, H.A., Bonde, J.P., Giwercman, A., Spano, M., Zschiesche, W., and ASCLEPIOS, 1999, Change in semen quality or DNA denaturation patterns during occupational styrene exposure. A longitudinal study, Int. Arch. Occup Environ Health. 72:135–141.PubMedCrossRefGoogle Scholar
  35. Kovanci, E., Kovacs, T., Moretti, E., Vigue, L., Bray-Ward, P., Ward, D., Huszar, G., 2001, FISH assessment of aneuploidy frequencies in mature and immature human spermatozoa classified by the absence or presence of cytoplasmic retention, Hum Reprod. 16:1209–1217.PubMedCrossRefGoogle Scholar
  36. Larsen, S.B., Giwercman, A., Spano, M., and Bonde, J.P., 1998, A longitudinal study of semen quality in pesticide spraying Danish farmers. The ASCLEPIOS Study Group, Reprod Toxicol. 12:581–589.PubMedCrossRefGoogle Scholar
  37. Larson, K.L., DeJonge, C.J., Barnes, A.M., Jost, L.K., and Evenson, D.P., 2000, Sperm chromatin structure assay parameters as predictors of pregnancy following assisted reproductive techniques, Hum Reprod. 15:1717–1722.PubMedCrossRefGoogle Scholar
  38. Liu, D.Y. and Baker, H.W.G., 1992a, Tests of human sperm function and fertilization in vitro, Fertil Steril. 58:465–483.PubMedGoogle Scholar
  39. Liu, D.Y. and Baker, H.W.G., 1992b, Sperm nuclear chromatin normality: relationship with sperm morphology, sperm-zona pellucida binding, and fertilization rates in vitro, Fertil Steril. 58:1178–1184.PubMedGoogle Scholar
  40. Lolis, D., Georgiou, I., Syrrou, M., Zikopoulos, Kl, Konstantelli, M., and Messinis, I., 1996, Chromomycin A3-staining as an indicator of protamine deficiency and fertilization, Intern J Androl. 19:23–27.CrossRefGoogle Scholar
  41. Lopes, S., Jurisicova, A., and Casper, R.F., 1998a, Gamete-specific DNA fragmentation in unfertilized human oocytes after intracytoplasmic sperm injection, Hum Reprod. 13:703–708.PubMedCrossRefGoogle Scholar
  42. Lopes, S., Sun, J.G., Jurisicova, A., Meriano, J., and Casper, R.F., 1998b, Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection, Fertil Steril. 69:528–532.PubMedCrossRefGoogle Scholar
  43. Lowe, X.R., de Stoppelaar, J.M., Bishop, J., Cassel, M., Hoebee, B., and Wyrobek A.J., 1998, Epididymal sperm aneuploidies detected in three genetic strains of rats by multi-color FISH, Env Mol Mut. 31:125–132.CrossRefGoogle Scholar
  44. Lowe, X., O’Hogan, S., Moore, D. II, Bishop, J., Wyrobek, A.J., 1996, Aneuploid epididymal sperm detected in chromosomally normal and Robertsonian translocation-bearing mice using a new threechromosome FISH method, Chromosoma105:204–210.PubMedGoogle Scholar
  45. Manicardi, G.C., Bianchi, P.G., Pantano, S., Azzoni, P., Bizzaro, D., Bianchi, U., Sakkas, D., 1995, Presence of endogenous nicks in DNA or ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility, Biol Reprod. 52:864–867.PubMedCrossRefGoogle Scholar
  46. Manicardi, G.C., Tombacco, A., Bizzaro, D., Bianchi, U., Bianchi, P.G., Sakkas, D., 1998, DNA strand breaks in ejaculated human spermatozoa: comparison of susceptibility to the nick translation and terminal transferase assays, Histochem J. 30:33–39.PubMedCrossRefGoogle Scholar
  47. Mclnnes, B., Rademaker, A., Greene, C.A., Ko, E., Barclay, L., and Martin, R.H., 1998, Abnormalities for chromosome 13 and 21 detected in spermatozoa from infertile men, Hum Reprod. 13:2787–2790.CrossRefGoogle Scholar
  48. Nasr-Esfahani M.H., Razavi, S., Mardani, M., 2001, Relation between different human sperm nuclear maturity tests and in vitro fertilization, J Assist Reprod Genet. 18:219–225.PubMedCrossRefGoogle Scholar
  49. Olshan, A.F. and Mattison, D.R. 1994, Male-Mediated Developmental Toxicity, Plenum Press, New York.Google Scholar
  50. Perreault, S.D., Rubes, J., Robbins, W.A., Evenson, D.P. and Selevan, S.G., 2000, Evaluation of ancuploidy and DNA damage in human spermatozoa: applications in field studies, Andrologia 32:247–254.PubMedCrossRefGoogle Scholar
  51. Robbins, W.A., Witt, K.L., Haseman, J.K., Dunson, D.B., Troiani, L., Cohen, M. S., Hamilton, C.D., Perreault, S.D., Libbus, B., Beyler, S.A., Raburn, D.J., Tedder, S.T., Shelby, M.D., and Bishop, J.B., 2001, Antiretroviral therapy effects on genetic and morphologic end points in lymphocytes and sperm of men with human immunodeficiency virus infection, J Infectious Dis. 184:127–135.CrossRefGoogle Scholar
  52. Sakkas, D., Mariethoz, E., Manicardi, G., Bizzaro, D., Bianchi, P.G. and Bianchi, U., 1999, Origin of DNA damage in ejaculated human spermatozoa, Rev Reprod. 4:31–37.PubMedCrossRefGoogle Scholar
  53. Sakkas, D., Urner, F., Bianchi, P.G., Bizzaro, D., Wagner, I., Jaquenoud, N., Manicardi, G., and Campana, A., 1996, Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection, Hum Reprod. 11:837–843.PubMedCrossRefGoogle Scholar
  54. Sakkas, D., Urner, F., Bizzaro, D., Manicardi, G., Bianchi, P.G., Shoukir, Y., and Campana, A., 1998, Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development, Hum Reprod. 13 (Suppl 4):11–19.PubMedCrossRefGoogle Scholar
  55. Schmid, T.E., Wang, X., and Adler, I.-D., 1999, Detection of aneuploidy by multicolor FISH in mouse sperm after in vivo treatment with acrylamide, colchicines, diazepam, or thiabendazole, Mutagenesis 14:173–179.Google Scholar
  56. Selevan, S.G., Borkovec, L., Slott, V.L., Zudova, Z., Rubes, J., Evenson, D.P., and Perreault, S.D., 2000, Semen quality and reproductive health of young Czech men exposed to seasonal air pollution, Environ Health Perspect. 108:887–894.PubMedCrossRefGoogle Scholar
  57. Shi, Q.H. and Martin, R.H., 2000, Aneuploidy in human sperm: a review of the frequency and distribution of aneuploidy, effects of donor age and lifestyle factors, Cytogenet Cell Genet 90:219–226.Google Scholar
  58. Singh, N.P., Danner, D.B., Tice, R.R., McCoy, M.T., Collins, G.D., and Schneider, E.L., 1989, Abundant alkali-sensitive sites in DNA of human and mouse sperm, Exp Cell Res. 184:461–470.PubMedCrossRefGoogle Scholar
  59. Singh, N.P., and Stephens, R.E., 1998, X-ray-induced double-strand breaks in human sperm, Mutagenesis 13: 75–79.Google Scholar
  60. Spano, M., Kolstad, H., Larsen, S.B., Cordelli, E., Leter, G., Giwercman, A., Bonde, J.P., and Asclepios, 1998, The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studies, Hum Reprod. 13:2495–2505.PubMedCrossRefGoogle Scholar
  61. Sloter, E., Lowe, X., Moore, D. II, Nath, J., Wyrobek, A., 2000, Chromosomal breaks, duplications, deletions, and aneuploidy in the sperm of healthy men., Am J Hum Genet. 67:862–872.PubMedCrossRefGoogle Scholar
  62. Spano, M., Bonde, J.P., Hjollund, H.I., Kolstad, H.A., Cordelli, E, and Leter, G., 2000, Sperm chromatin damage impairs human fertility. The Danish Pregnancy Planner Study Team, Fertil Steril. 73:43–50.PubMedCrossRefGoogle Scholar
  63. Steger, K., Failing, K., Klonisch, T., Behre, H.M., Manning, M., Weidner, W., Hertle, L., Bergmann, M., and Kliesch, S., 2001, Round spermatids from infertile men exhibit decreased protaminc-1 and-2 mRNA, Hum Reprod. 16:709–716.PubMedCrossRefGoogle Scholar
  64. Sun, J.G., Jurisicova, A., and Casper, R.F., 1997, Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro, Biol Reprod. 56:602–607.PubMedCrossRefGoogle Scholar
  65. Tice, R.R., Agurell, E., Anderson, D., Burlinson,B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J.C., and Sasaki, Y.F,, 2000, Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ Mol Mutagen. 35:206–221.PubMedCrossRefGoogle Scholar
  66. Twigg, J., Fulton, N., Gomez, E., Irvine, D.S. and Aitken, R.J., 1998a, Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and the effectiveness of antioxidants, Hum Reprod. 13:1429–1436.PubMedCrossRefGoogle Scholar
  67. Twigg, J., Irvine, D.S., Houston, P., Fulton, N., Michael, L., and Aitken, R.J., 1998b, Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma, Molec Human Reprod. 4:439–445.CrossRefGoogle Scholar
  68. Van Hummelen, P., Lowe, X.R., and Wyrobek, A.J., 1996, Simultaneous detection of structural and numerical chromosome abnormalities in sperm of healthy men by multicolor fluorescence in situ hybridization, Hum Genet. 98:608–615.PubMedCrossRefGoogle Scholar
  69. Wyrobek, A.J., Anderson, D., Lewis, S., Nagao, T., Perreault, S., Robaire, B., and Schradcr, S., 1994, Biomarkers and health endpoints of developmental toxicology of paternal origin: Summary of working group discussion, in: Male-Mediated Developmental Toxicity, A.F. Olshan and D.R. Mattison, eds., Plenum Press, New York, p. 359.CrossRefGoogle Scholar
  70. Wyrobek, A. J., Marchetti, F., Sloter, E., Bishop, J., 2000, Chromosomally defective sperm and their developmental consequences, in: Human Monitoring after Environmental and Occupational Exposure to Chemical and Physical Agents, D. Anderson, A.E. Karakaya, and RJ Sram, eds., NATO Science Series, Vol. 313, IOS Press, p. 134.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Sally D. Perreault
    • 1
  • R. John Aitken
    • 2
  • H. W. Gordon Baker
    • 3
  • Donald P. Evenson
    • 4
  • Gabor Huszar
    • 5
  • D. Stewart Irvine
    • 6
  • Ian D. Morris
    • 7
  • Rebecca A. Morris
    • 1
  • Wendie A. Robbins
    • 8
  • Denny Sakkas
    • 5
  • Marcello Spano
    • 9
  • Andrew J. Wyrobek
    • 10
  1. 1.U.S. EPA, ORD, NHEERL, Reproductive Toxicology DivisionResearch Triangle ParkUSA
  2. 2.School of Biological & Chemical SciencesUniversity of NewcastleNewcastleAustralia
  3. 3.Department of Obstetrics and GynaecologyRoyal Women’s Hospital University of MelbourneAustralia
  4. 4.Olson Biochemistry Laboratories, ASC 136, South Dakota State UniversityBrookingsUSA
  5. 5.Department of Obstetrics and GynaecologyYale University School of MedicineNew HavenUSA
  6. 6.Centre for Reproductive Biology, MRC Human Reproductive Sciences UnitEdinburghUK
  7. 7.Biological Sciences, Stopford BuildingUniversity of ManchesterManchesterUK
  8. 8.UCLA Center for Occupational and Environmental HealthLos AngelesUSA
  9. 9.Section of Toxicology & Biomedical SciencesENEA CR CasacciaRomeItaly
  10. 10.Biology and Biotechnology ResearchLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations