Fuzzy Controllers with Dynamics, a Systematic Design Approach

  • Stefan Preitl
  • Radu-Emil Precup
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 754)


The paper presents aspects concerning the systematic design of fuzzy controllers (of Mamdani type and Takagi-Sugeno type) with dynamics. There are considered PI and PID fuzzy controllers resulting in fuzzy control systems which are type-II and type-in fuzzy systems according to Koczy (1996) and Sugeno (1999). The fuzzy controllers are applicable to a wide range of applications.


PI controllers fuzzy controllers dynamics design digital simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babuska, R. and H.B. Verbruggen (1996). An Overview on Fuzzy Modeling for Control. Control Engineering Practice, 4, 1593–1606.CrossRefGoogle Scholar
  2. De Silva, C.W. (1991). Simulation Studies of an Analytical Fuzzy Tuner for a PID Servo. Proceedings of ACC’91, 2100–2105.Google Scholar
  3. Driankov, D., H. Hellendoorn and M. Reinfrank (1993). An Introduction to Fuzzy Control. Springer-Verlag, Berlin, Heidelberg, New York.zbMATHCrossRefGoogle Scholar
  4. Galichet, S. and L. Foulloy (1995). Fuzzy Controllers: Synthesis and Equivalences. IEEE Trans, on Fuzzy Systems, 3, 140–148.CrossRefGoogle Scholar
  5. Kawaji, S., T. Maeda and N. Matsunaga (1991). Design of Fuzzy Control System Based on PD Control Scheme. Proceedings of 4 th IFSA World Congress, Brussels, 77–80.Google Scholar
  6. Mamdani, E.H. (1974). Application of Fuzzy Algorithms for Control of a Simple Dynamic Plant. Proceedings of IEE, 121, 1585–1588.Google Scholar
  7. Mann, G.K.I., B.-G. Hu and R.G. Gosine (1999). Analysis of Direct Action Fuzzy PID Controller Structure. IEEE Trans, on SMC —part B, 29, 371–388.Google Scholar
  8. Moon, B.S. (1995). Equivalence between Fuzzy Logic Controllers and PI Controllers for Single. Input Systems. Fuzzy Sets and Systems, 69, 105–113.MathSciNetCrossRefGoogle Scholar
  9. Koczy, L.T. (1996). Fuzzy If-Then Rule Models and Their Transformation into One Another. IEEETrans. on Systems, Man, and Cybernetics —part A, 26, 621–637.CrossRefGoogle Scholar
  10. Precup, R.-E. and S. Preitl (1993). Fuzzy Control of an Electro-hydraulic Servo-system under Nonlinearities Constraints. Proceedings of 1 st EUMT’93 European Congress, Aachen, 3, 1524–1530.Google Scholar
  11. Precup, R.-E. and S. Preitl (1994). On a Fuzzy Digital PID Predictive Controller. Proceedings of 2 nd IEEE Mediterranean Symposium on “New Directions in Control and Automation”, Chania, Crete, 669–673.Google Scholar
  12. Precup, R.-E. and S. Preitl (1995). On the Transfer Properties of a SISO Fuzzy Controller with Adaptable Static Characteristic. Proceedings of 5 th Symposium on “Automatic Control and Computer Science—SACCS’95 ”,Iasi, 1, 132–137.Google Scholar
  13. Precup, R.-E. and S. Preitl (2001). On the Development of Fuzzy Controllers for Electrohydraulic Systems. Proceedings of 7 th Symposium on “Automatic Control and Computer Science — SACCS’ 93”, Iasi, CD-ROM, 4 pp.Google Scholar
  14. Precup, R.-E. and S. Preitl (2002). Development Method for a Takagi-Sugeno PI Fuzzy Controller. Preprints of 15 th IFAC World Congress, Barcelona, CD-ROM, paper s390, 6 pp.Google Scholar
  15. Preitl, S. and R.-E. Precup (1999). An Extension of Tuning Relations after Symmetrical Optimum Method for PI and PID Controllers. Automatica, 35, 1731–1736.zbMATHCrossRefGoogle Scholar
  16. Preitl, S. and R.-E. Precup (2001). Introduction to Control Engineering. Editura Politehnica Publishers, Timisoara (in Romanian).Google Scholar
  17. Siler, W. and H. Ying (1989). Fuzzy Control Theory — the Linear Case. Fuzzy Sets and Systems, 33, 275–290.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Skrjanc, I, K. Kavsek-Biasizzo, D. Matko and O. Hecker (1996). Fuzzy Predictive Control Based on Relational Matrix Model. Computers in Chemical Engineering, 20, S931–S936.CrossRefGoogle Scholar
  19. Sugeno, M. (1999). On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singleton Consequents. IEEE Trans, on Fuzzy Systems, 7, 201–224.CrossRefGoogle Scholar
  20. Takagi, T. and M. Sugeno (1985). Fuzzy Identification of Systems and Its Application to Modeling and Control. IEEE Trans, on SMC, 15, 116–132.zbMATHGoogle Scholar
  21. Tang, K.L. and R.J. Mulholland (1987). Comparing Fuzzy Logic with Classical Controller Designs. IEEE Trans, on SMC, 17, 1085–1087.Google Scholar
  22. Tzafestas, S.G. (1985). Applied Digital Control. North-Holland, Amsterdam.Google Scholar
  23. Zhao, Z.-Y., M. Tomizuka and S. Isaka (1993). Fuzzy Gain Scheduling of PID Controllers. IEEE Trans, on SMC, 23, 1392–1398.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stefan Preitl
    • 1
  • Radu-Emil Precup
    • 1
  1. 1.Dept. of Automation“ Politehnica” University of TimisoaraTimisoaraRomania

Personalised recommendations