Pseudomonas pp 139-164 | Cite as

Comparative Genomics of Four Pseudomonas Species

  • Lars Juhl Jensen
  • Marie Skovgaard
  • Thomas Sicheritz-Pontén
  • Niclas Tue Hansen
  • Helle Johansson
  • Merete Kjær Jørgensen
  • Kristoffer Kiil
  • Peter F. Hallin
  • David Ussery


The genus Pseudomonas is one of the most diverse bacterial genera, containing over 60 validly described species, isolated from sources ranging from plants to contaminated soils and water to human clinical samples. They are obligate aerobic chemoorganotrophs capable of living on a wide range of aliphatic and aromatic carbon compounds. Not surprisingly, the genus Pseudomonas is also phylogenetically rather heterogenous, containing several subgroups3.


Comparative Genomic Bacterial Genome Sigma Factor Pseudomonas Putida Local Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achaz G., Rocha E.P., Netter. P, and Coissac E., 2002, Origin and fate of repeats in bacteria. Nucl. Acids Res., 30:2987–2994.PubMedCrossRefGoogle Scholar
  2. 2.
    Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W, and Lipman D.J, 1997, Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res., 25:3389–3402.PubMedCrossRefGoogle Scholar
  3. 3.
    Anzai Y., Kim H., Park J., Wakabayashi H., and Oyaizu H., 2000, Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Sys. Evolut. Microbiol., 50:1563–1589.CrossRefGoogle Scholar
  4. 4.
    Bentley S.D., Chater K.F., Cerdeño-Tärraga A.-M., Challis G.L., Thomson N.R., James K.D., Harris D.E., Quali A., Kieser H., Harper D., Bateman A., Brown S., Chandra G., Chen, C.W., Collins M., Cronin A., Fraser A., Goble A., Hidalgo J., Hornsby T., Howarth S., Huang C.-H., Kieser T., Larke L., Murphy L., Oliver K., O’Neil S., Rabbinowitsch E., Rajandream M.-A., Rutherford K., Rutter S., Seeger K., Saunder D., Sharp S., Squares R., Squares S., Taylor K., Warren T., Wietzorrek A., Woodward K., Barrell B.G., Parkhill K., and Hopwood D.A., 2002, Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417:141–147.PubMedCrossRefGoogle Scholar
  5. 5.
    Boeckmann B., Bairoch A., Apweiler R., Blatter M.C., Estreicher A., Gasteiger E., Martin MJ., Michoud K., O’Donovan C., Phan I., Pilbout S., and Schneider M., 2003, The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucl. Acids Res., 31:365–370.PubMedCrossRefGoogle Scholar
  6. 6.
    Buell C., Joardar V., Lindeberg M., Selengut J, Paulsen I., Gwinn M., Dodson R., Deboy A., Durkin A.S., Kolonay J., Madupu R., Daugherty S., Brinkac L., Beanan M., Haft D., Nelson W, Davidsen T., Zafar N., Zhou L., Liu J., Yuan Q., Khouri H., Fedorova N., Tran B., Russell D., Berry K., Utterback T., Van Aken S., Feldblyum T., D’ Ascenzo M., Deng W, Ramos A., Alfano J., Cartinhouri S., Chatterjee A., Delaney T., Lazarowitz S., Martin G., Schneideri D., Tang X., Bender C., White O., Fraser C., and Collmer A., 2003, The complete genome sequence of the arabidopsis and tomato pathogen Pseudomonas syringae pv. tomatodc3000. Proc. Natl. Acad. Sci. USA, 100:10181–10186.PubMedCrossRefGoogle Scholar
  7. 7.
    Collmer A., Badel J.L., Charkowski A.O., Deng WL., Fouts D.E., Ramos A.R., Rehm A.H., Anderson D.M., Schneewind O., van Dijk K., and Alfano J.R., 2000, Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc. Natl. Acad. Sci. USA, 97:8770–8777.PubMedCrossRefGoogle Scholar
  8. 8.
    Cournoyer B., Watanabe S., and Vivian A., 1998, A tellurite-resistance genetic determinant from phytopathogenic Pseudomonads encodes a thiopurine methyltransferase: Evidence of a widely-conserved family ofmethyltransferases. Biochim. Biophys. Acta, 1397:161–168.PubMedCrossRefGoogle Scholar
  9. 9.
    Eddy S.R., 1998, Profile hidden markov models. Bioinformatics, 14:755–763.PubMedCrossRefGoogle Scholar
  10. 10.
    Felsenstein J., 1989, Phylip—Phylogeny inference package (version 3.2). Cladistics, 5:164–166.Google Scholar
  11. 11.
    Francis M.S., Wolf-Watz H., and Forsberg A., 2002, Regulation of type III secretion systems. Curro Opin. Microbiol., 5:166–172.CrossRefGoogle Scholar
  12. 12.
    Fraser C.M., Gocayne J.D., White O., Adams M.D., Clayton R.A., Fleishmann R.D., Bult C.J., Kerlavage A.R., Sutton G., Kelley J.M., Fritchman J.L., Weidman J.F., Small K.V, Sandusky M., Fuhrmann J., Nguyen D., Utterback T.R., Saudek D.M., Phillips C.A., Merrick J.M., Tomb J.F., Dougherty B.A., Bott K.F., Hu P.C., Lucier T.S., Petersen S.N., Smith H.O., Hutchison C.A., and Venter J.C., 1995, The minimal gene complement of Mycoplasma genitalium. Science, 270:397–403.PubMedCrossRefGoogle Scholar
  13. 13.
    Friis C., Jensen L.J., and Ussery D.W., 2000, Visualization of pathogenicity regions in bacteria. Genetica, 108:47–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Jensen L.J., Friis C., and Ussery D.W, 1999, Three views of microbial genomes. Res. Microbiol., 150:773–777.PubMedCrossRefGoogle Scholar
  15. 15.
    Larsen T. and Krogh A., 2003, Easygene—A prokaryotic gene finder that ranks ORFs by statistical significance. BMC Bioinformatics, 4:21.PubMedCrossRefGoogle Scholar
  16. 16.
    Lobry J.R., 1996, Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol., 13:660–665.PubMedCrossRefGoogle Scholar
  17. 17.
    Madan Babu M., 2003, Did the loss of sigma factors initiate pseudogene accumulation in M leprae? Trends Microbiol., 11:59–61.CrossRefGoogle Scholar
  18. 18.
    Martinez-Bueno M., Tobes R., Rey M., and Ramos J., 2002, Detection of multiple extracytoplasmic function (ecf) sigma factors in the genome of Pseudomonas putida KT2440 and their counterparts in Pseudomonas aeruginosa PA01. Environ. Microbiol., 4:842–855.PubMedCrossRefGoogle Scholar
  19. 19.
    McLean M.J., Wolfe K.H., and Devine K.M., 1998, Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol., 47:691–696.PubMedCrossRefGoogle Scholar
  20. 20.
    Missiakas D. and Raina S., 1998, The extracytoplasmic function sigma factors: Role and regulation. Mol. Microbiol., 28:1059–1066.PubMedCrossRefGoogle Scholar
  21. 21.
    Mittenhuber G., 2002, An inventory of genes encoding RNA polymerase sigma factors in 31 completely sequenced eubacterial genomes. J. Mol. Microbiol. Biotechnol., 4:77–91.PubMedGoogle Scholar
  22. 22.
    Mynbaeva B.N., Okorokov L.A., Abdrashitova S.A., and Ilialetdinov A.N., 1984, Phosphate and glucose accumulation by Pseudomonas cultures in relation to their arsenic resistance. Mikrobiologiia, 53:822–825.PubMedGoogle Scholar
  23. 23.
    Nelson K.E., Weinel C., Paulsen I.T., Dodson R.J., Hilbert H., Martins dos Santos VA., Fouts D.E., Gill S.R., Pop M., Holmes M., Brinkac L., Beanan M., DeBoy R.T., Daugherty S., Kolonay J., Madupu R., Nelson W, White O., Peterson J., Khouri H., Hance I., Chris Lee P, Holtzapple E., Scanlan D., Tran K., Moazzez A., Utter-back T., Rizzo M., Lee K., Kosack D., Moestl D., Wedler H., Lauber J., Stjepandic D., Hoheisel J., Straetz M., Heim S., Kiewitz C., Eisen J., Timmis K.N., Dusterhoft A., Tummler B., and Fraser C.M., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.PubMedCrossRefGoogle Scholar
  24. 24.
    Pedersen A.G., Baldi P., Chauvin Y., and Brunak S., 1998, DNA structure in human RNA polymerase II promoters. J. Mol. Biol., 281:663–673.PubMedCrossRefGoogle Scholar
  25. 25.
    Pedersen A.G., Jensen L.J., Steerfeldt H.H., Brunak S., and Ussery D.W, 2000, A DNA structural atlas of E. coli. J. Mol. Biol., 299:907–930.PubMedCrossRefGoogle Scholar
  26. 26.
    Roine E., Wei W, Yuan J., Nurmiaho-Lassila E.L., Kalkkinen N., Romantschuk M., and He S.Y., 1997, Hrp pilus: An hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA, 94:3459–3464.PubMedCrossRefGoogle Scholar
  27. 27.
    Satchwell S.C., Drew H.R., and Travers A.A., 1986, Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol., 191:659–675.PubMedCrossRefGoogle Scholar
  28. 28.
    Skovgaard M., Jensen L.J., Friis C., Staerfeldt H.-H., Worning P., Brunak S., and Ussery D., 2002, The atlas visualisation of genome-wide information. In B. Wren and N. Dorrell (eds), Methods in Microbiology, Vol. 33, pp. 49–63. Academic Press London, UK.Google Scholar
  29. 29.
    Stover C.K., Pham X.Q., Erwin A.L., Mizoguchi S.D., Warrener P., Hickey M.J., Brinkman FS., Hufnagle W.O., Kowalik D.J., Lagrou M., Garber R.L., Goltry L., Tolentino E., Westbrock-Wadman S., Yuan Y., Brody L.L., Coulter S.N., Folger K.R., Kas A., Larbig K., Lim R., Smith K., Spencer D., Wong G.K., Wu Z., and Paulsen I.T., 2000, The complete genome of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406:959–964.PubMedCrossRefGoogle Scholar
  30. 30.
    Sugita M., Sugishita H., Fujishiro T., Tsuboi M., Sugita C., Endo T., and Sugiura M., 1997, Organization of a large gene cluster encoding ribosomal proteins in the cyanobacterium Synechococcus sp. strain PCC 6301: Comparison of gene clusters among cyanobacteria, eubacteria and chloroplast genomes. Gene, 195:73–79.PubMedCrossRefGoogle Scholar
  31. 31.
    Taylor D.E., 1999, Bacterial tellurite resistance. Trends in Microbiology, 7:111–115.PubMedCrossRefGoogle Scholar
  32. 32.
    Thompson J.D., Higgins D.G., and Gibson T.J., 1994, CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucl. Acids Res., 22:4673–4680.PubMedCrossRefGoogle Scholar
  33. 33.
    Ussery D.W., Soumpasis D.M., Brunak S., Staerfeldt H.H., Woming P., and Krogh A., 2002, Bias of purine stretches in sequenced genomes. Computers in Chemistry, 26:531–541.CrossRefGoogle Scholar
  34. 34.
    Weinel C., Nelson K.E., and Tummler B., 2002, Global features of the Pseudomonas putida KT2440 genome sequence. Environ. Microbiol., 4:809–818.PubMedCrossRefGoogle Scholar
  35. 35.
    Weinel C., Ussery D., Ohlsson H., Ponten T., Kiewitz C., and Tummler B., 2002, Comparative genomics of Pseudomonas aeruginosa PAO1 and KT2440: Orthologs, codon usage, repetitive extragenic palindromic elements, and oligonucleotide motif signatures. Genome Letters, 1:175–187.CrossRefGoogle Scholar
  36. 36.
    Yahr T.L., Goranson J., and Frank D.W., 1996, Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol. Microbiol., 22:991–1003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Lars Juhl Jensen
    • 1
    • 2
    • 3
  • Marie Skovgaard
    • 1
  • Thomas Sicheritz-Pontén
    • 1
    • 4
  • Niclas Tue Hansen
    • 1
  • Helle Johansson
    • 1
  • Merete Kjær Jørgensen
    • 1
  • Kristoffer Kiil
    • 1
  • Peter F. Hallin
    • 1
  • David Ussery
    • 1
  1. 1.Center for Biological Sequence Analysis, BioCentrum-DTUThe Technical University of DenmarkLyngbyDenmark
  2. 2.Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
  3. 3.Max-Delbrück-Centre für Molecular MedicineBerlinGermany
  4. 4.Department of Medicinal ChemistryDivision of Pharmacognosy BMCUppsalaSweden

Personalised recommendations