Pseudomonas pp 457-476 | Cite as

Life as a Biocontrol Pseudomonad

  • Yvan Moënne-Loccoz
  • Geneviève Défago


Many Pseudomonas strains can benefit plants directly, by promoting plant growth and health, and/or indirectly through inhibition of, or competition with pathogens, parasites, or plant competitors21, 32, 39, 43,60,79. Not all pseudomonads have biocontrol capacities, and among those that do certain display several different biocontrol mechanisms. Current Pseudomonas taxonomy is not satisfactory and requires extensive revision9, 86, but from the existing knowledge it appears that biocontrol capacities are rather straindependent than species-dependent. The significance of biocontrol pseudomonads for plant protection is exemplified by their contribution to disease-suppressiveness of soils62, 65, 112. This chapter provides an overview of the ecological particularities of biocontrol pseudomonads, as well as a review of interaction mechanisms with phytopathogens, the plant, and non-target soil microbiota.


Salicylic Acid Arbuscular Mycorrhizal Fungus Induce Systemic Resistance Fusaric Acid Systemic Acquire Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeles F.B., Morgan P.W. and Saltveit M.E., 1992, Ethylene in Plant Biology, 2nd edn. Academic Press San Diego, CA.Google Scholar
  2. 2.
    Audenaert K., Pattery T., Cornelis P. and Hõfte M., 2002, Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelm, and pyocyanin. Mol. Plans-Microbe Interact., 15:1147–1156.CrossRefGoogle Scholar
  3. 3.
    Barea J.M., Andrade G., Bianciotto V., Dowling D., Lohrke S., Bonfante P., O’Gara F. and Azcon-Aguilar C., 1998, Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl. Environ. Microbiol., 64:2304–2307.PubMedGoogle Scholar
  4. 4.
    Barnett S.J., Singleton I. and Ryder M., 1999, Spatial variation in populations of Pseudomonas corrugata 2140 and pseudomonads on take-all diseased and healthy root systems of wheat. Soil Biol. Biochem., 31:633–636.CrossRefGoogle Scholar
  5. 5.
    Berling C.H., 1991, Anwendung der Immunfluoreszenz-Mikroskopie zur Lokalisation eines krankheitsunterdrückenden Pseudomonas fluorescens-Stammes auf Tabakwurzeln. Ph.D. Dissertation No. 9474. ETH Zürich, Switzerland.Google Scholar
  6. 6.
    Beyeler M., Keel C., Michaux P. and Haas D., 1999, Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHAO affects root growth of cucumber but does not improve protection of the plant against Pythium root rot. FEMS Microbiol. Ecol., 28:225–233.CrossRefGoogle Scholar
  7. 7.
    Bjedov I., Lecointre G., Tenaillon O., Vaury C., Radman M., Taddei F., Denamur E. and Matic I., 2003, Polymorphism of genes encoding SOS polymerases in natural populations of Escherichia coli. DNA Repair, 2:417–426.PubMedCrossRefGoogle Scholar
  8. 8.
    Bloemberg G.V., Wijfjes A.H., Lamers G.E., Stuurman N. and Lugtenberg B.J., 2000, Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: New perspectives for studying microbial communities. Mol. Plant-Microbe Interact., 13:1170–1176.PubMedCrossRefGoogle Scholar
  9. 9.
    Bossis E., Lemanceau P., Latour X. and Gardan L., 2000, The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: Current status and need for revision. Agronomie, 20:51–63.CrossRefGoogle Scholar
  10. 10.
    Butler M.J. and Day A.W., 1998, Fungal melanins: A review. Can. J. Microbiol., 44:1115–1136.CrossRefGoogle Scholar
  11. 11.
    Camara M., Williams P. and Hardman A., 2002, Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect. Dis., 2:667–676.PubMedCrossRefGoogle Scholar
  12. 12.
    Campbell J.I.A., Carsten S.J. and Sørensen J., 1995, Species variation and plasmid incidence among fluorescent Pseudomonas strains isolated from agricultural and industrial soils. FEMS Microbial. Ecol., 18:51–62.CrossRefGoogle Scholar
  13. 13.
    Carroll H., Moënne-Loccoz Y., Dowling D.N. and O’Gara F., 1995, Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2,4-diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugarbeets. Appl. Environ. Microbiol., 61:3002–3007.PubMedGoogle Scholar
  14. 14.
    Chapon A., Guillerm A.Y., Delalande L., Lebreton L. and Sarniguet A., 2002, Dominant colonisation of wheat roots by Pseudomonas fluorescens Pf29A and selection of the indigenous microflora in the presence of the take-all fungus. Eur: J Plant Pathol., 108:449–459.CrossRefGoogle Scholar
  15. 15.
    Chin-A-Woeng T.F.C., Bloemberg G.V. and Lugtenberg B.J.J., 2003, Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol., 157:503–523.CrossRefGoogle Scholar
  16. 16.
    Cook J., Bruckart W.L., Coulson J.R., Goettel M.S., Humber R.A., Lumsden R.D., Maddox J.V., McManus M.L., Meyer S.F., Quimby P.C., Stack J.P and Vaughn J.L., 1996, Safety of microorganisms intended for pest and plant disease control: A framework for scientific evaluation. Biol. Control, 7:333–351.CrossRefGoogle Scholar
  17. 17.
    Cook R.J., Thomashow L.S., Weller D.M., Fujimoto D., Mazzola M., Bangera G. and Kim, D.S., 1995, Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. USA, 92:4197–4201.PubMedCrossRefGoogle Scholar
  18. 18.
    Corich V., Giacomini A., Concheri G., Ritzerfeld B., Vendramin P., Struffi P., Basaglia M., Squartini A., Casella S., Nuti M.P., Peruch U., Poggiolini S., de Troch P., Vanderleyden J., Fedi S., Fenton A., Moënne-Loccoz Y., Dowling D.N. and O’Gara F., 1995, Environmental impact of genetically modified Azospirillum brasilense, Pseudomonas fluorescens and Rhizobium leguminosarum released as soil/seed inoculants. In D.D. Jones (ed.), Proceedings of the Third International Symposium on the Biosafety Results of Field Tests of Genetically-Modified Plants and Microorganisms, pp. 371–388. University of California Monterey, CA.Google Scholar
  19. 19.
    Crescenzi O., Napolitano A. and Prota G., 1991, Oxidative coupling of dopa with resorcinol and phloroglucinol—isolation of adducts with an unusual tetrahydromethanobenzofuro[2,3-D]azocine skeleton. Tetrahedron, 47:6243–6250.CrossRefGoogle Scholar
  20. 20.
    Cronin D., Moënne-Loccoz Y., Fenton A., Dunne C., Dowling D.N. and O’Gara F., 1997, Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol. Ecol., 23:95–106.CrossRefGoogle Scholar
  21. 21.
    Cronin D., Moënne-Loccoz Y., Fenton A., Dunne C., Dowling D.N. and O’Gara F., 1997, Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad F113 with the potato cyst nematode Globodera rostochiensis. Appl. Environ. Microbiol., 63:1357–1361.PubMedGoogle Scholar
  22. 22.
    Dekkers L.C., Phoelich C.C., van der Fits L. and Lugtenberg B.J., 1998, A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc. Natl. Acad. Sci. USA, 95:7051–7056.PubMedCrossRefGoogle Scholar
  23. 23.
    de Leij F.A.A.M., Dixon-Hardy J.E. and Lynch J.M., 2002, Effect of 2,4-diacetylphloroglucinol-producing and non-producing strains of Pseudomonas fluorescens on root development of pea seedlings in three different soil types and its effect on nodulation by Rhizobium. Biol. Fertil. Soils, 35:114–121.CrossRefGoogle Scholar
  24. 24.
    de Leij F.A.A.M., Sutton E.J., Whipps J.M., Fenlon J.S. and Lynch J.M., 1995, Impact of field release of genetically-modified Pseudomonas fluorescens on indigenous microbial populations of wheat. Appl. Environ. Microhiol., 61:3443–3453.Google Scholar
  25. 25.
    Demanèche S., Kay E., Gourbiere F. and Simonet P., 2001, Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil. Appl. Environ. Microbiol., 67:2617–2621.PubMedCrossRefGoogle Scholar
  26. 26.
    de Souza J.T. and Raaijmakers J.M., 2003, Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbial. Ecol., 43:21–34.CrossRefGoogle Scholar
  27. 27.
    de Souza J.T., Weller D.M. and Raaijmakers J.M., 2003, Frequency, diversity, and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology, 93:54–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Dowling D.N., Sexton R., Fenton A., Fedi S., McHugh B., Callanan M., Moënne-Loccoz Y. and O’Gara F., 1996, Iron regulation in plant-associated Pseudomonas fluorescens M114: Implications for biological control. In T. Nakazawa, K. Ferukawa, D. Haas, and S. Silver, (eds.), Molecular Biology of Pseudomonads, pp. 502–512. American Society for Microbiology Washington, D.C.Google Scholar
  29. 29.
    Duffy B.K. and Défago G., 1999, Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol., 65:2429–2438.PubMedGoogle Scholar
  30. 30.
    Duffy B., Schouten A. and Raaijmakers J., 2003, Pathogen self-defense: Mechanisms to counteract microbial antagonism. Annu. Rev. Phytopathol. 41:501–538.PubMedCrossRefGoogle Scholar
  31. 31.
    Edwards S.G., Young J.P.W. and Fitter A.H., 1998, Interactions between Pseudomonas fluoreseens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiol. Lett., 166:297–303.CrossRefGoogle Scholar
  32. 32.
    Ellis R.J., Timms-Wilson T.M. and Bailey M.J., 2000, Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ. Microbiol., 2:274–284.PubMedCrossRefGoogle Scholar
  33. 33.
    Frey-Klett P., Churin J.L., Pierrat J.C. and Garbaye J., 1999, Dose effect in the dual inoculation of an ectomycorrhizal fungus and a mycorrhiza helper bacterium in two forest nurseries. Soil Biol. Biochem., 31:1555–1562.CrossRefGoogle Scholar
  34. 34.
    Germida J.J. and Walley F.L., 1996, Plant growth-promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biol. Fertil. Soils, 23:113–120.CrossRefGoogle Scholar
  35. 35.
    Girlanda M., Perotto S., Moënne-Loccoz Y., Bergero R., Lazzari. A., Défago G., Bonfante, P. and Luppi. A.M., 2001, Impact of biocontrol Pseudomonas fluorescens CHAO and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl. Environ. Microbiol., 67:1851–1864.PubMedCrossRefGoogle Scholar
  36. 36.
    Glandorf D.C., Verheggen P., Jansen T., Jorrirsma J.-W., Smit E., Leeflang P., Wernars K., Thomashow L S., Laureijs E., Thomas-Oates J.E., Bakker P.A.H.M. and van Loon. L.C., 2001, Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizospherc microflora on field-grown wheat. Appl. Environ. Micobiol., 67:3371–3378.CrossRefGoogle Scholar
  37. 37.
    Glick B.R., Penrose D.M. and Li J.P., 1998, A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol., 190:63–68.PubMedCrossRefGoogle Scholar
  38. 38.
    Gunawardena U. and Hawes M.C., 2002, Localization of root infection by fungal pathogens: Role of root border cells. Mol. Plant-Microbe Interact., 15:1128–1136.PubMedCrossRefGoogle Scholar
  39. 39.
    Haas D. and Keel C., 2003, Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41:117–153.PubMedCrossRefGoogle Scholar
  40. 40.
    Hale M.G., Moore L.D. and Griffin G.J., 1978, Root exudates and exudation. In Y.R. Dommergues and S.V. Krupa (eds), Interactions Between Non-Pathogenic Soil Microorganisms and Plants, Developments in Agricultural and Managed-Forest Ecology, Vol. 4., pp. 163–203. Elsevier Amsterdam, The Netherlands.CrossRefGoogle Scholar
  41. 41.
    Hallet B., 2001, Playing Dr Jekyll and Mr Hyde: Combined mechanisms of phase variation in bacteria. Curr. Opin. Microbiol., 4:570–581.PubMedCrossRefGoogle Scholar
  42. 42.
    Hamid M., Siddiqui I.A. and Shaukat S.S., 2003, Improvement of Pseudomonas fluorescens CHAO biocontrol activity against root-knot nematode by the addition of ammonium molybdate. Lett. Appl. Microbiol., 36:239–244.PubMedCrossRefGoogle Scholar
  43. 43.
    Harris P.A. and Stahlman P.W., 1996, Soil bacteria as selective biological control agents of winter annual grass weeds in winter wheat. Appl. Soil Ecol., 3:275–281.CrossRefGoogle Scholar
  44. 44.
    Henson J.M., Butler M.J. and Day A.W., 1999, The dark side of the mycelium: Melanins of phytopathogenic fungi. Annu. Rev. Phytopathol. 37:447–471.PubMedCrossRefGoogle Scholar
  45. 45.
    Hunt M.D., Neuenschwander U.H., Delaney T.P., Weymann K.B., Friedrich L.B., Lawton K.A., Steiner H.Y. and Ryals J., 1996, Recent advances in systemic acquired resistance research—A review. Gene, 179:89–95.PubMedCrossRefGoogle Scholar
  46. 46.
    Joergensen R.G., Küntzel H., Scheu S. and Seitz D., 1998, Movement of faecal indicator organisms in earthworm channels under a loamy arable and grassland soil. Appl. Soil Ecol., 8:1–10.CrossRefGoogle Scholar
  47. 47.
    Johansen J.E., Binnerup S.J., Lejbolle K.B., Mascher F., Sørensen J. and Keel C., 2002, Impact of biocontrol strain Pseudomonas fluorescens CHAO on rhizosphere bacteria isolated from barley (Hordeum vulgare L.) with special reference to Cytophaga-like bacteria. J. Appl. Microbiol., 93:1065–1074.PubMedCrossRefGoogle Scholar
  48. 48.
    Keel C., Schnider U., Maurhofer M., Voisard C., Burger U., Wirthner P., Haas D. and Défago G., 1992. Suppression of root diseases by Pseudomonas fluorescens CHAO: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Interact., 5:4–13.CrossRefGoogle Scholar
  49. 49.
    Kuzyakov Y. and Domanski G., 2000, Carbon input by plants into soil. Review J. Plant Nutr. Soil Sc., 163:421–431.CrossRefGoogle Scholar
  50. 50.
    Landa B.B., Mavrodi O.V., Raaijmakers J.M., McSpadden Gardener B.B., Thomashow L.S. and Weller D.M., 2002, Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl. Environ. Microbiol., 68:3226–3237.PubMedCrossRefGoogle Scholar
  51. 51.
    Latour X., Corberand T., Laguerre G., Allard F., and Lemanceau P., 1996, The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl. Environ. Microbiot., 62:2449–2456.Google Scholar
  52. 52.
    Laue R.E., Jiang Y., Chhabra S.R., Jacob S., Stewart G.S.A.B., Hardman A., Downie J.A., O’Gara F. and Williams P., 2000, The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin. N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology, 146:2469–2480.PubMedGoogle Scholar
  53. 53.
    Lemanceau P., Bakker P.A.H.M., de Kogel W.J., Alabouvette C. and Schippers B., 1992, Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of Fusarium wilt of carnation by nonpathogenic Fusarium oxysporum Fo47. Appl. Environ. Microbiol., 58:2978–2982.PubMedGoogle Scholar
  54. 54.
    Livine A. and Daly J.M., 1966, Translocation in healthy and rust-affected beans. Phytopathology, 56:107–175.Google Scholar
  55. 55.
    Lübeck P.S., Hansen M. and Sørensen J., 2000, Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization techniques. FEMS Microbiol. Ecol., 33:11–19.PubMedCrossRefGoogle Scholar
  56. 56.
    Mascher F., Hase C., Moënne-Loccoz Y. and Défago G., 2000, The viable but nonculturable state induced by abiotic stress in the biocontrol agent Pseudomonas fluorescens CHAO does not promote strain persistence in soil. Appl. Environ. Microbiol., 66:1662–1667.PubMedCrossRefGoogle Scholar
  57. 57.
    Mascher F., Moënne-Loccoz Y., Schnider-Keel U., Keel C., Haas D. and Défago G., 2002, Inactivation of the regulatory gene algU or gacA can affect the ability of biocontrol Pseudomonas fluorescens CHAO to persist as culturable cells in nonsterile soil. AppJ. Environ. Microbiol., 68:2085–2088.CrossRefGoogle Scholar
  58. 58.
    Mascher F., Schnider-Keel U., Haas D., Défago G. and Moënne-Loccoz Y., 2003, Persistence and cell culturability of bioconrrol strain Pseudomonas fluorescens CHAO under plough pan conditions in soil and influence of the anaerobic regulator gene anr. Environ. Microbiol., 5:103–115.PubMedCrossRefGoogle Scholar
  59. 59.
    Maurhofer M., Hase C., Meuwly P., Métraux J.-P. and Défago G., 1994, Induction of systemic resistance of tobacco to tobacco necrosis virus by the root colonizing Pseudomonas fluorescens strain CHAO: Influence of the gacA gene and of pyoverdin production. Phytopathology, 89:139–146.CrossRefGoogle Scholar
  60. 60.
    Maurhofer M., Reimmann C., Schmidli-Sacherer P., Heeb S., Haas D. and Défago G., 1998, Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology, 88:78–684.CrossRefGoogle Scholar
  61. 61.
    Mavrodi O.V., McSpadden Gardener B.B., Mavrodi D.V., Bonsall R.F., Weller D.M. and Thomashow L.S., 2001, Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology, 91:35–43.PubMedCrossRefGoogle Scholar
  62. 62.
    Mazzola M., 2002, Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie van Leeuwenhoek, 81:557–564.PubMedCrossRefGoogle Scholar
  63. 63.
    Mazzola M., Cook. R.J., Thomashow L.S., Weller D.M. and Pierson III L.S., 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol., 58:2616–2624.PubMedGoogle Scholar
  64. 64.
    Mazzola M., Fujimoto D.K., Thomashow L.S. and Cook R.J., 1995, Variation in sensitivity of Gaeumannomyces graminis to antibiotics produced by fluorescent Pseudomonas spp. and effect on biological control of take-allof wheat. Appl. Environ. Microbiol., 61:2554–2559.PubMedGoogle Scholar
  65. 65.
    McSpadden Gardener B.B. and Weller D.M., 2001, Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl. Environ. Microbial., 67:4414–4425.CrossRefGoogle Scholar
  66. 66.
    Miché L., Belkin S., Rozen R. and Balandreau J., 2003, Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors. Environ. Microbiol., 5:403–411.PubMedCrossRefGoogle Scholar
  67. 67.
    Moënne-Loccoz Y., Powell J., Higgins P., McCarthy J. and O’Gara F., 1998, An investigation of the impact of biocontrol Pseudomonas fluorescens F113 on the growth of sugarbeet and the performance of subsequent clover-Rhizobium symbiosis. Appl. Soil Ecol., 7:225–237.CrossRefGoogle Scholar
  68. 68.
    Moënne-Loccoz Y., Tichy H.-V., O’Donnell A., Simon R. and O’Gara F., 2001, Impact of 2,4-diacetylphloroglucinol-producing biocontrol strain Pseudomonas fluorescens F113 on intraspecific diversity of resident culturable fluorescent pseudomonads associated with the roots of field-grown sugar beet seedlings. Appl. Environ. Microbiol., 67:3418–3425.PubMedCrossRefGoogle Scholar
  69. 69.
    Molina L., Constantinescu F., Michel L., Reimmann C., Duffy B. and Défago G., 2003, Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbial. Ecol., 45:71–81.CrossRefGoogle Scholar
  70. 70.
    Morrissey J.P., Walsh U.F., O’Donnell A., Moënne-Loccoz Y. and O’Gara F., 2002, Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek, 81:599–606.PubMedCrossRefGoogle Scholar
  71. 71.
    Natsch A., Keel C., Hebecker N., Laasik E. and Défago G., 1997, Influence of biocontrol strain Pseudomonas fluorescens CHAO and its antibiotic overproducing derivative on the diversity of resident root colonizing pseudomonads. FEMS Microbiol. Ecol., 23:341–352.CrossRefGoogle Scholar
  72. 72.
    Natsch A., Keel C., Hebecker N., Laasik E. and Défago G., 1998, Impact of Pseudomonas fluorescens strain CHAO and a derivative with improved biocontrol activity on the culturable resident bacterial community on cucumber roots. FEMS Microbiol. Ecol., 27:365–380.CrossRefGoogle Scholar
  73. 73.
    Natsch A., Keel C., Pfirter H.A. and Défago G., 1994, Contribution of the global regulator gene gacA to persistence and dissemination of Pseudomonas fluorescens biocontrol strain CHAO introduced into soil microcosms. Appl. Environ. Microbiol., 60:2553–2560.PubMedGoogle Scholar
  74. 74.
    Natsch A., Keel C., Troxler J., Zala M., von Albertini N. and Défago G., 1996, Importance of preferential flow and soil management in vertical transport of a biocontrol strain of Pseudomonas fluorescens in structured field soil. Appl. Environ. Microbiol., 62:33–40.PubMedGoogle Scholar
  75. 75.
    Niemann S., Keel C., Pühler A. and Selbitschka W., 1997, Biocontrol strain Pseudomonas fluorescens CHAO and its genetically modified derivative with enhanced biocontrol capability exert comparable effects on the structure of a Sinorhizobium meliloti population in gnotobiotic systems. Biol. Perfil. Soils, 25:240–244.CrossRefGoogle Scholar
  76. 76.
    Notz R., Maurhofer M., Dubach H., Haas D. and Défago. G., 2002, Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHAO in vitro and in the rhizosphere of wheat. Appl. Environ. Microbiol., 68:2229–2235.PubMedCrossRefGoogle Scholar
  77. 77.
    Notz R., Maurhofer M., Schnider-Keel U., Duffy B.K., Haas D. and Défago G., 2001, Biotic factors affecting expression of the 2,4 diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHAO in the rhizosphere. Phytopathology, 91:873–881.PubMedCrossRefGoogle Scholar
  78. 78.
    Oliver J.D., 2000, The viable but nonculturable state and cellular resuscitation. In C.R. Bell, M. Brylinsky, and P. Johnson-Green (eds), Microbial Biosystems: New Frontiers, pp. 723–730. Atlantic Canada Society for Microbial Ecology Halifax, Canada.Google Scholar
  79. 79.
    Patten C.L. and Glick B.R., 2002, Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol., 68:3795–3801.PubMedCrossRefGoogle Scholar
  80. 80.
    Paulitz T., Anas O. and Fernando D.G., 1992, Biological control of Pythium damping-off by seed treatment with Pseudomonas putida: Relationship with ethanol production by pea and soybean seeds. Biocontrol Sci. Technol., 2:193–201.CrossRefGoogle Scholar
  81. 81.
    Penrose D.M. and Glick B.R., 2003, Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant, 118:10–15.PubMedCrossRefGoogle Scholar
  82. 82.
    Picard C. and Bosco M., 2003, Genetic diversity of phlD gene from 2,4-diacetylphloroglucinol-producing Pseudomonas spp. strains from the maize rhizosphere. FEMS Microbiol. Lett., 219:167–172.PubMedCrossRefGoogle Scholar
  83. 83.
    Pieterse C.M.J., van Pelt J.A., Verhagen B.W.M., Ton J., van Wees S.C.M., Leon-Kloosterziel K.M. and van Loon L.C., 2003, Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis, 35:39–54.Google Scholar
  84. 84.
    Raaijmakers J.M., van der Sluis I., van Den Hout M., Bakker P.A.H.M. and Schippers B., 1995, Dispersal of wild-type and genetically-modified Pseudomonas spp. from treated seeds or soil to aerial parts of radish plants. Soil Biol. Biochem., 27:1473–1478.CrossRefGoogle Scholar
  85. 85.
    Raaijmakers J.M., Vlami M. and de Souza J.T., 2002, Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek, 81:537–547.PubMedCrossRefGoogle Scholar
  86. 86.
    Ramette A., Défago G. and Moënne-Loecoz Y., 2003, Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol. Plant-Microbe Interact., 16:525–535.PubMedCrossRefGoogle Scholar
  87. 87.
    Ramette A., Moënne-Loccoz Y. and Défago G., 2003, Prevalence offluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot. FEMS Microbiol. Ecol., 44:35–43.PubMedCrossRefGoogle Scholar
  88. 88.
    Ramette A., Moënne-Loccoz Y. and Défago G., 2001, Polymorphism of the polyketide synthase gene phlD in biocontrol fluorescent pseudomonads producing 2,4-diacetylphloroglucinol and comparison of PhlD with plant polyketide synthases. Mol. Plant-Microbe Interact., 14:639–652.PubMedCrossRefGoogle Scholar
  89. 89.
    Ravnskov S. and Jakobsen I., 1999, Effects of Pseudomonas fluorescens D57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza, 8:329–334.CrossRefGoogle Scholar
  90. 90.
    Sánchez-Contreras M., Martin M., Villacieros M., O’Gara F., Bonilla I. and Rivilla R., 2002, Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J. Bacseriol., 184:1587–1596.CrossRefGoogle Scholar
  91. 91.
    Schmidt O., Doube B.M., Ryder M.H. and Killham K., 1997, Population dynamics of Pseudomonas corrugata 2140R LUX8 in earthworm food and in earthworm casts. Soil Biol. Biochem., 29:523–528.CrossRefGoogle Scholar
  92. 92.
    Sharifi-Tehrani A., Zala M., Natsch A., Moënne-Loccoz Y. and Défago G., 1998, Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur. J Plant Pathol., 104:631–643.CrossRefGoogle Scholar
  93. 93.
    Stephens P.M., Davoren C.W., Ryder M.H. and Doube B.M., 1993, Influence of the lumbricid earthworm Aporrectodea trapezoides on the colonization of wheat roots by Pseudomonas corrugata strain 2140R in soil. Soil Biol. Biochem., 25:1719–1724.CrossRefGoogle Scholar
  94. 94.
    Stutz E.W., Défago G. and Kern H., 1986, Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology, 76:181–185.CrossRefGoogle Scholar
  95. 95.
    Teplitski M., Robinson J.B. and Bauer W.D., 2000, Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant-Microbe Interact., 13:637–648.PubMedCrossRefGoogle Scholar
  96. 96.
    Thirup L., Johnsen K. and Winding A., 2001, Succession of indigenous Pseudomonas spp. and actinomycetes on barley roots affected by the antagonistic strain Pseudomonas fluorescens DR54 and the fungicide Imazalil. Appl. Environ. Microbiol., 67:1147–1153.PubMedCrossRefGoogle Scholar
  97. 97.
    Top E.M., Moënne-Loccoz Y., Pembroke T. and Thomas C.M., 2000, Phenotypic traits conferred by plasmids. In Thomas C.M. (ed.), The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread, pp. 249–285. Harwood Academic Publishers Amsterdam, The Netherlands.Google Scholar
  98. 98.
    Toyoda H., Hashimoto H., Utsumi R., Kobayashi H. and Ouchi S., 1988, Detoxification of fusaric acid by a fusaric acid-resistant mutant of Pseudomonas solanacearum and its application to biological control of fusarium wilt of tomato. Phytopathology, 78:1307–1311.CrossRefGoogle Scholar
  99. 99.
    Troxler J., Azelvandre P., Zala M., Défago G. and Haas D., 1997, Conjugative transfer of chromosomal genes between fluorescent pseudomonads in the rhizosphere of wheat. Appl. Environ. Microbiol., 63:213–219.PubMedGoogle Scholar
  100. 100.
    Troxler J., Berling C.H., Moënne-Loccoz Y., Keel C. and Défago G., 1997, Interactions between the biocontrol agent Pseudomonas fluorescens CHAO and Thielaviopsis basicola in tobacco roots observed by immunofluorescence microscopy. Plant Pathol., 46:62–71.CrossRefGoogle Scholar
  101. 101.
    Troxler J., Zala M., Moënne-Loccoz Y. and Défago G., 1997, Predominance of nonculturable cells of the biocontrol strain Pseudomonas fluorescens CHAO in the surface horizon of large outdoor lysimeters. Appl. Environ. Microbiol., 63:3776–3782.PubMedGoogle Scholar
  102. 102.
    Troxler J., Zala M., Natsch A., Moënne-Loccoz Y. and Défago G., 1997, Autecology of the biocontrol strain Pseudomonas fluorescens CHAO in the rhizosphere and inside roots at later stages of plant development. FEMS Microbiol. Ecol., 23:119–130.CrossRefGoogle Scholar
  103. 103.
    Troxler J., Zala M., Natsch A., Nievergelt J., Keel C. and Défago G., 1998, Transport of a biocontrol Pseudomonas fluorescens through 2.5-m deep outdoor lysimeters and survival in the effluent water. Soil Biol. Biochem., 30:621–631.CrossRefGoogle Scholar
  104. 104.
    Uroz S., D’Angelo C., Carlier A., Elasri M., Sicot C., Petit A., Oger P., Faure D. and Dessaux Y., 2004, Novel bacteria degrading N-acyl homoserinc lactones and their use as quenchers of quorum-sensing regulated functions of plant pathogenic bacteria. Appl. Environ. Microbial. (in press)Google Scholar
  105. 105.
    van Elsas J.D., Trevors J.T. and van Overbeek L.S., 1991, Influence of soil properties on the vertical movement of genetically-marked Pseudomonas fluorescens through large soil microcosms. Biol. Fertil. Soils. 10:249–255.CrossRefGoogle Scholar
  106. 106.
    van Wees S.C.M., de Swart E.A.M., van Pelt J.A., van Loon L.C. and Pieterse C.M.J., 2000, Enhancement of induced disease resistance by simultaneous activation of salicylateand jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 97:8711–8716.PubMedCrossRefGoogle Scholar
  107. 107.
    Vemooij B., Friedrich L., Morse A., Reist R., Kolditzjawhar R., Ward E., Uknes S., Kessmann H. and Ryals J., 1994, Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell, 6:959–965.Google Scholar
  108. 108.
    Villacieros M., Power B., Sánchez-Contreras M., Lloret J., Oruezabal R.J., Martin M., Femandez-Pinas F., Bonilla I., Whelan C., Dowling D.N. and Rivilla R., 2003, Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil, 251:47–54.CrossRefGoogle Scholar
  109. 109.
    Voisard C., Keel C., Haas D. and Défago G., 1989, Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J., 8:351–358.PubMedGoogle Scholar
  110. 110.
    Walsh U.F., Moënne-Loccoz Y., Tichy H.-V., Gardner A., Corkery D.M., Lorkhe S. and O’Gara F., 2003, Residual impact of the biocontrol inoculant Pseudomonas fluorescens F113 on the resident population of rhizobia nodulating a red clover rotation crop. Microb. Ecol., 45:145–155.PubMedCrossRefGoogle Scholar
  111. 111.
    Wang C., Knill E., Glick B.R. and Défago G., 2000, Effect of transferring I-aminocyclopropane-l-carboxylic acid (ACC) deaminase genes into Pseudomonas fluarescens strain CHAO and its derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can.J Microbiol., 46:1–10.CrossRefGoogle Scholar
  112. 112.
    Wang C., Ramette A., Punjasamarnwong P., Zala M., Natsch A., Moënne-Loccoz Y. and Défago G., 2001, Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin. FEMS Microbiol. Ecol., 37:105–116.CrossRefGoogle Scholar
  113. 113.
    Wimpenny J.W.T. and Colasanti R., 1997, A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol. Ecol., 22:1–16.CrossRefGoogle Scholar
  114. 114.
    Wood D.W., Gong F., Daykin M.M., Williams P. and Pierson III L.S., 1997, N-acylhomoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. J. Bacteriol., 179:7663–7670.PubMedGoogle Scholar
  115. 115.
    Yamada T., 1993, The role of auxin in plant-disease development. Ann. Rev. Phytopathol., 31:253–273.CrossRefGoogle Scholar
  116. 116.
    Zehnder G., Kloepper J., Tuzun S., Yao C.B., Wei G., Chambliss O. and Shelby R. 1997, Insect feeding on cucumber mediated by rhizobacteria-induced plant resistance. Entomol. Exp. Appl., 83:81–85.CrossRefGoogle Scholar
  117. 117.
    Zehnder G.W., Murphy J.E., Sikora E.J. and Kloepper J.W., 2001, Application of rhizobacteria for induced resistance. Eur. J Plant Pathol., 107:39–50.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Yvan Moënne-Loccoz
    • 1
  • Geneviève Défago
    • 2
  1. 1.UMR CNRS 5557 Ecologie MicrobienneUniversité Claude Bernard (Lyon 1)Villeurbanne CedexFrance
  2. 2.Phytopathology Group, Institute of Plant SciencesSwiss Federal Institute of Technology (ETH)ZürichSwitzerland

Personalised recommendations