Neurotransmitters in the Nucleus Tractus Solitarius Mediating Cardiovascular Function
Abstract
The importance of the nucleus tractus solitarius (nTS) in the regulation of cardiovascular function has been known for a long time. However, the role of different neurotransmitters in this region in mediating cardiovascular functions is just beginning to be delineated. The carotid chemoreceptor afferents terminate predominantly in a midline area around the calamus scriptorius in the commissural subnucleus of the nTS while the baroreceptor and cardiopulmonary receptor afferents terminate in a region more rostral and lateral to the chemoreceptor projection site. There is a general consensus that glutamate is the neurotransmitter released at the terminals of baroreceptor, cardiopulmonary and chemoreceptor afferents in the nTS. However, cholinergic, GABAergic, and opioidergic mechanisms are also present in the nTS. Activation of glutamatergic and cholinergic mechanisms in the nTS elicits depressor responses while the activation of GABAergic and opioidergic mechanisms elicits pressor responses. Although, the precise physiological role of cholinergic, GABAergic, and opioidergic nTS mechanisms in regulating cardiovascular function remains to be elucidated, there is a general consensus that these mechanisms may play a neuromodulatory role in the nTS.
Key words
Blood pressure bradycardia caudal ventrolateral medullary depressor area chemoreceptor projection site depressor responses heart rate pressor responses rostral ventrolateral medullary pressor areaPreview
Unable to display preview. Download preview PDF.
References
- Agarwal, S.K., Gelsema, A.J., Calaresu F.R., 1989. Neurons in rostral VLM are inhibited by chemical stimulation of caudal VLM in rats. Am. J. Physiol. 257R265–R270.PubMedGoogle Scholar
- Aicher, S.A., Kurucz, O.S., Reis, D.J., Milner, T.A., 1995. Nucleus tractus solitarius efferent terminals synapse on neurons in the caudal ventrolateral medulla that project to the rostral ventrolateral medulla. Brain Res. 69351–63.PubMedCrossRefGoogle Scholar
- Andresen, M.C., Yang, M., 1990. Non-NMDA receptors mediate sensory afferent synaptic transmission in medial nucleus tractus solitarius. Am. J. Physiol. 259H1307–H1311.PubMedGoogle Scholar
- Aylwin, M.L., Horowitz, J.M., Bonham, A.C., 1997. NMDA receptors contribute to primary visceral afferent transmission in the nucleus of the solitary tract. J. Neurophysiol. 772539–2548.PubMedGoogle Scholar
- Bazil, M.K., Gordon, F.J., 1991. Spinal NMDA receptors mediate pressor responses evoked from rostral ventrolateral medulla. Am. J. of Physiol. 260H267–H275.Google Scholar
- Bennet, J.A., McWilliam, P.N., Shepheard, S.L., 1987. A gamma-aminobutyric-acid-mediated inhibition of neurones in the nucleus tractus solitarius of the cat. J. Physiol. (Lond.) 392417–430.Google Scholar
- Berlin, M.F., Nanopoulos, D., Didier, M., Agüera, M., Steinbusch, H., Verhofstad, A., Maitre, M., Pujol, J.F., 1983. Immunohistochemical evidence for the presence of gamma-aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotonin. Brain Res. 275329–339.CrossRefGoogle Scholar
- Blessing, W.W., Oertel, W.H., Willoughby, J.O., 1984. Glutamic acid decarboxylase immunoreactivity is present in perikariya of neurons in nucleus tractus solitarius of rat. Brain Res. 322346–350.PubMedCrossRefGoogle Scholar
- Bonham, A.C., Chen, C.Y., 2002. Glutamatergic neural transmission in the nucleus tractus solitarius: N-methyl-D-aspartate receptors. Clin. Exp. Pharmacol. Physiol. 29497–502.PubMedCrossRefGoogle Scholar
- Bowery, N.G., Hudson, A.L., Price, G.W., 1987. GABAA and GABAB receptor binding site distribution in the rat central nervous system. Neurosci. 20365–383.CrossRefGoogle Scholar
- Bronstein, D.M., Schafer, M.K.H., Watson, S.J., Akil, H., 1992. Evidence that beta-endorphin is synthesized in cells in the nucleus tractus solitarius: detection of POMC mRNA. Brain Res. 587269–275.PubMedCrossRefGoogle Scholar
- Brophy, S., Ford, T.W., Carey, M., Jones, J.F.X., 1999. Activity of aortic chemoreceptors in the anesthetized rat. J. Physiol. (Lond.) 514821–828.CrossRefGoogle Scholar
- Brown, D.L., Guyenet, P.G., 1985. Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ. Res. 56359–369.PubMedCrossRefGoogle Scholar
- Chen, C.Y., Ling, E.H., Horowitz, J.M., Bonham, A.C., 2002. Synaptic transmission in nucleus tractus solitarius is depressed by Group II and III but not Group I presynaptic metabotropic glutamate receptors in rats. J. Physiol. (Lond.) 538773–786.CrossRefGoogle Scholar
- Cheng, Z., Powley, T.L., Schwaber, J.S., Doyle, F.J., 1997. A laser confocal microscopic study of vagal afferent innervation of rat aortic arch: chemoreceptors as well as baroreceptors. J. Auton. Nerv. Syst. 671–14.PubMedCrossRefGoogle Scholar
- Chitravanshi, V.C., Kachroo, A., Sapru, H.N., 1994. A midline area in the nucleus commissuralis of NTS mediates the phrenic nerve responses to carotid chemoreceptor stimulation. Brain Res. 662127–133.PubMedCrossRefGoogle Scholar
- Chitravanshi, V.C., Sapru, H.N., 1995. Chemoreceptor-sensitive neurons in commissural subnucleus of nucleus tractus solitarius of the rat. Am. J. Physiol. 268R851–R858.PubMedGoogle Scholar
- Chitravanshi, V.C., Sapru, H.N., 1996. NMDA as well as non-NMDA receptors mediate the neurotransmission of inspiratory drive to phrenic motoneurons in the adult rat. Brain Res. 715104–112.PubMedCrossRefGoogle Scholar
- Chitravanshi, V.C., Sapru, H.N., 1997. NMDA as well as non-NMDA receptors in phrenic nucleus mediate respiratory effects of carotid chemoreflex. Am. J. Physiol. 272R302–R310.PubMedGoogle Scholar
- Criscione, L., Reis, D.J., Taiman, W.T., 1983. Cholinergic mechanisms in the nucleus tractus solitarii and cardiovascular regulation in the rat. Eur. J. Pharmacol. 8847–55.PubMedCrossRefGoogle Scholar
- Dhar, S., Nagy, F., Mcintosh, J.M., Sapru, H.N., 2000. Receptor subtypes mediating depressor responses to microinjections of nicotine into the medial nTS of the rat. Am. J. Physiol. 279R132–R140.Google Scholar
- Dhruva, A., Bhatnagar, T., Sapru, H.N., 1998. Cardiovascular responses to microinjections of glutamate into the nucleus tractus solitarii of unanesthetized supracollicular decerebrate rats. Brain Res. 81088–100.CrossRefGoogle Scholar
- Finley, J.C.W., Katz, D.M., 1992. The central organization of carotid body afferent projections to the brainstem of the rat. Brain Res. 572108–116.PubMedCrossRefGoogle Scholar
- Florentino, A., Varga, K., Kunos, G., 1990. Mechanism of the cardiovascular effects of GABAB receptor activation in the nucleus tractus solitarii of the rat. Brain Res. 535264–270.PubMedCrossRefGoogle Scholar
- Foley, C.M., Vogl, H.W., Mueller, P.J., Hay, M., Hasser, E.M., 1999. Cardiovascular response to group I metabotropic glutamate receptor activation in NTS. Am. J. Physiol. 276R1469–R1478.PubMedGoogle Scholar
- Gordon, F.J., 1987. Aortic baroreceptor reflexes are mediated by NMDA receptors in caudal ventrolateral medulla. Am. J. Physiol. 252R628–R633.PubMedGoogle Scholar
- Gordon, F.J., 1990. Opioids and central baroreflex control. A site of action in the nucleus tractus solitarius. Peptides 11305–309.PubMedCrossRefGoogle Scholar
- Gordon, F.J., 1994. Opioids and the nucleus of the tractus solitarius: effects on cardiovascular and baroreflex function. In: Barraco, I.R.A. (Ed.), Nucleus of the Solitary Tract. CRC Press, Boca Raton, pp. 283–287.Google Scholar
- Gordon, F.J., Leone, C., 1991. Non-NMDA receptors in the nucleus of the tractus solitarius play the predominant role in mediating aortic baroreceptor reflexes. Brain Res. 568319–322.PubMedCrossRefGoogle Scholar
- Gordon, F.J., Sved, A.F., 2002. Neurotransmitters in central cardiovascular regulation: Glutamate and GABA. Clin. Exp. Pharmacol. Physiol. 29522–524.PubMedCrossRefGoogle Scholar
- Guyenet, P.G., Filtz, T.M., Donaldson, S.R., 1987. Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res. 407272–284.PubMedCrossRefGoogle Scholar
- Guyenet, P.G., Koshiya, N., 1995. Working model of the sympathetic chemoreflex in rats. Clin. Exp. Hypertension 17167–179.CrossRefGoogle Scholar
- Hassen, A.H., Feuerstein, G., Faden, A.I., 1983. Differential cardiovascular effects mediated by mu and kappa opiate receptors in hindbrain nuclei. Peptides 4621–625.PubMedCrossRefGoogle Scholar
- Heike, C.J., Sohl, B.D., Jacobowitz, D.M., 1980. Choline acetyltransferase activity in discrete brain nuclei of DOCA-salt hypertensive rats. Brain Res. 193293–298.CrossRefGoogle Scholar
- Jordan, D., Mifflin, S.W., Spyer, K.M., 1988. Hypothalamic inhibition of neurones in the nucleus tractus solitarius of the cat is GABA mediated. J. Physiol. (Lond.) 399389–404.Google Scholar
- Klausmair, A., Philippu, A., 1989. Carotid occlusion increases the release of endogenous GABA in the nucleus of the solitary tract. Naunyn-Schmiedeberg’s Arch. Pharmacol. 340764–766.CrossRefGoogle Scholar
- Kobayashi, M., Cheng, Z.B., Tanaka, K., Nosaka, S., 1999. Is the aortic depressor nerve involved in arterial chemoreflexes in rats? J. Auton. Nerv. Syst. 7838–48.PubMedCrossRefGoogle Scholar
- Koshiya, N., Guyenet, P.G., 1996. NTS neurons with carotid chemoreceptor inputs arborize in the rostral ventrolateral medulla. Am. J. Physiol. 270R1273–R1278.PubMedGoogle Scholar
- Kubo, T., Kihara, M., 1987. Evidence for the presence of GABAergic and glycine-like systems responsible for cardiovascular control in the nucleus tractus solitarii of the rat. Neurosci. Lett. 74331–336.PubMedCrossRefGoogle Scholar
- Kubo, T., Amano, M., Asari, T., 1993. N-methyl-D-aspartate receptors but not non-N-methyl-D-aspartate receptors mediate hypertension induced by carotid body chemoreceptor stimulation in the rostral ventrolateral medulla of the rat. Neurosci. Lett. 164113–116.PubMedCrossRefGoogle Scholar
- Kwok, E.H., Dun, N.J., 1998. Endomorphins decrease heart rate and blood pressure possibly by activating vagal afferents in anesthetized rats. Brain Res. 803204–207.PubMedCrossRefGoogle Scholar
- Liu, Z., Chen, C.Y., Bonham, A.C., 1998. Metabotropic glutamate receptors depress vagal and aortic baroreceptor signal transmission in the NTS. Am. J. Physiol. 275H1682–H1694.PubMedGoogle Scholar
- Marchenko, V., Sapru, H.N., 2000. Different patterns of respiratory and cardiovascular responses elicited by chemical stimulation of dorsal medulla in the rat. Brain Res. 85799–109.PubMedCrossRefGoogle Scholar
- Meunier, J.C., Mollereau, C., Toll, L., Suaudeau, C., Moisand, C., Alvinerie, P., Butour, J.L., Guillemot, J.C., Ferrara, P., Monsarrat, B., Mazargull, H., Vassaart, G., Parmentier, M., Costentin, J., 1995. Isolation and structure of the endogenous agonist of opioid receptorlike ORLI receptor. Nature 377532–535.PubMedCrossRefGoogle Scholar
- Miyawaki, T., Minson, J., Amolda, L., Llewellyn-Smith, I., Chalmers, J., Pilowsky, P., 1996. AMPA/kainate receptors mediate sympathetic chemoreceptor reflex in the rostral ventrolateral medulla. Brain Res. 72664–68.PubMedGoogle Scholar
- Miyawaki, T., Suzuki, S., Minson, J., Amolda, L., Chalmers, J., Llewellyn-Smith, I., Pilowsky, P., 1997. Role of AMPA/kainate receptors in transmission of the sympathetic baroreflex in rat CVLM. Am. J. Physiol. 272R800–R812.PubMedGoogle Scholar
- Neal, C.R., Mansour, A., Reinscheid, R., Nothacker, H-P., Civelli, O., Watson, S.J., 1999. Localization of orphanin FQ (Nociceptin) peptide and messenger RNA in the central nervous system of the rat. J. Comp. Neurol. 406503–547.PubMedCrossRefGoogle Scholar
- Neff, R.A., Mihalevich, M., Mendelowitz, D., 1998. Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus. Brain Res. 792277–282.PubMedCrossRefGoogle Scholar
- Numao, Y., Siato, M., Terui, N., Kumada, M., 1985. The aortic nerve-sympathetic reflex in the rat. J. Auton. Nerv. Syst. 1365–79.PubMedCrossRefGoogle Scholar
- Ohta, H., Taiman, W.T., 1994. Both NMDA and non-NMDA receptors in the NTS participate in the baroreceptor reflex in rats. Am. J. Physiol. 267R1065–R1070.PubMedGoogle Scholar
- Ohta, H., Li, X., Taiman, W.T., 1996. Release of glutamate in the nucleus tractus solitarii in response to baroreflex activation in rats. Neurosci. 7429–37.CrossRefGoogle Scholar
- Patón, J.F.R., De Paula, P.M., Spyer, K.M., Machado, B.H., Boscan, P., 2002. Sensory afferent selective role of P2 receptors in the nucleus tractus solitarii for mediating the cardiac component of the peripheral chemoreceptor reflex in rats. J. Physiol. (Lond.) 543995–1005.CrossRefGoogle Scholar
- Pilowsky, P.M., Goodchild, A.K., 2002. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J. Hypertension 201675–1688.CrossRefGoogle Scholar
- Ross, C.A., Ruggiero, D.A., Park, D.H., Joh, T.H., Sved, A.F., Fernandez-Pardal, J., Saavedra, J.M., Reis, D.J., 1984. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J. Neurosci. 4474–494.PubMedGoogle Scholar
- Sapru, H.N., 1994. Transmitter/receptor mechanisms in cardiovascular control by the NTS: excitatory amino acids, acetylcholine and substance P. In: Barraco, I.R.A. (Ed.), Nucleus of the Solitary Tract. CRC Press; Boca Raton, pp. 267–281.Google Scholar
- Sapru, H.N., 2002. Glutamate circuits in selected medullo-spinal areas regulating cardiovascular function. Clin. Exp. Pharmacol. Physiol. 29491–496.PubMedCrossRefGoogle Scholar
- Sapru, H.N., Chitravanshi, V.C., 2002. Responses to microinjections of endomorphin and nociceptin into the medullary cardiovascular areas. Clin. Exp. Pharmacol. Physiol. 29243–247.PubMedCrossRefGoogle Scholar
- Sapru, H.N., Krieger, A.J., 1977. Carotid and aortic chemoreceptor function in the rat. J. Appl. Physiol. 42344–348.PubMedGoogle Scholar
- Sapru, H.N., Willette, R.N., Krieger, A.J., 1981a. Stimulation of pulmonary J receptors by an enkephalin-analog. J. Pharmacol. Exp. Ther. 217228–234.PubMedGoogle Scholar
- Sapru, H.N., Gonzalez, E.R., Krieger, A.J., 1981b. Aortic nerve stimulation in the rat: cardiovascular and respiratory responses. Brain Res. Bull. 6393–398.PubMedCrossRefGoogle Scholar
- Seagard, J.L., Dean, C., Hopp, F.A., 2001. Properties of NTS neurons receiving input from barosensitive receptors. Ann. NY Acad. Sci. 940142–156.PubMedCrossRefGoogle Scholar
- Schreihofer, A.M., Guyenet, P.G., 2002. The baroreflex and beyond: Control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin. Exp. Pharmacol. Physiol. 29514–521.PubMedCrossRefGoogle Scholar
- Stornetta, R.L., Guyenet, P.G., McCarty, R.C., 1987. Autonomic nervous system control of heart rate during baroreceptor activation in conscious and anesthetized rats. J. Auton. Nerv. Syst. 20121–127.PubMedCrossRefGoogle Scholar
- Sun, M.K., Guyenet, P.G., 1985. GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am. J. Physiol. 249R672–R680.PubMedGoogle Scholar
- Sun, M.K., Reis, D.J., 1995. NMDA receptor-mediated sympathetic chemoreflex excitation of RVL-spinal vasomotor neurones in rats. J. Physiol. (Lond.) 48253–68.Google Scholar
- Sun, M.K., Reis, D.J., 1996. Excitatory amino acid-mediated chemoreflex excitation of respiratory neurones in rostral ventrolateral medulla in rats. J. Physiol. (Lond.) 492559–571.Google Scholar
- Sundaram, K., Watson, M., Sapru, H.N., 1989. M2 muscarinic receptor agonists produce hypotension and bradycardia when injected into the nucleus tractus solitarii. Brain Res. 477358–362.PubMedCrossRefGoogle Scholar
- Sundaram, K., Sapru, H.N., 1991. NMDA receptors in the intermediolateral column of the spinal cord mediate sympathoexcitatory responses elicited from the ventrolateral medullary pressor area. Brain Res. 54433–41.PubMedCrossRefGoogle Scholar
- Suzuki, T., Takayama, K., Miura, M., 1997. Distribution and projection of the medullary cardiovascular control neurons containing glutamate, glutamic acid decarboxylase, tyrosine hydroxylase and phenylethanolamine N-methyltransferase in rats. Neurosci. Res. 279–19.PubMedCrossRefGoogle Scholar
- Sved, A.F., 1994. GABA-mediated neural transmission in mechanisms of cardiovascular control by the NTS. In: Barraco, I.R.A. (Ed.), Nucleus of the Solitary Tract. CRC Press, Boca Raton, pp. 245–253.Google Scholar
- Sved, A. F., Tsukamoto, K., 1992. Tonic stimulation of GAB A B receptors in the nucleus tractus solitarius modulates the baroreceptor reflex. Brain Res. 59237–43.PubMedCrossRefGoogle Scholar
- Taiman, W.T., Perrone, M.H., Reis, D.J., 1980. Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science 209813–815.CrossRefGoogle Scholar
- Tsukamoto, K., Yin, M., Sved, A.F., 1994. Effect of atropine injected into the nucleus tractus solitarius on the regulation of blood pressure. Brain Res. 6489–15.PubMedCrossRefGoogle Scholar
- Uhl, G.R., Childers, S., Pasternak, G., 1994. An opiate-receptor gene family reunion. Trends Neurosci. 1789–93.PubMedCrossRefGoogle Scholar
- Urbanski, R., Sapru, H.N., 1988a. Evidence for a sympathoexcitatory pathway from the nucleus tractus solitarius to the ventrolateral medullary pressor area, J. Auton. Nerv. Syst. 23161–174.CrossRefGoogle Scholar
- Urbanski, R., Sapru, H.N., 1988b. Putative neurotransmitters involved in medullary cardiovascular regulation. J. Auton. Nerv. Syst. 25181–193.PubMedCrossRefGoogle Scholar
- Van Giersbergen, P.L.M., Palkovits, M., De Jong, W., 1992. Involvement of neurotransmitters in the nucleus tractus solitarii in cardiovascular regulation. Physiol. Rev. 72789–824.PubMedGoogle Scholar
- Vardhan, A., Kachroo, A., Sapru, H.N., 1993a. Excitatory amino acid receptors in the commissural nucleus of the NTS mediate carotid chemoreceptor responses. Am. J. Physiol.264R41–R50.PubMedGoogle Scholar
- Vardhan, A., Kachroo, A., Sapru, H.N., 1993b. Excitatory amino acid receptors in the nTS mediate the responses to the stimulation of cardio-pulmonary vagal C fiber endings. Brain Res. 61823–31.PubMedCrossRefGoogle Scholar
- Velley, L., Milner, T.A., Chan, J., Morrison, S.F., Pickel, V.M., 1991. Relationship of met-enkephalin-like immunoreactivity to vagal afferents and motor dendrites in the nucleus of the solitary tract: A light and electron microscopic dual labeling study. Brain Res. 550298–312.PubMedCrossRefGoogle Scholar
- Verberne, A.J.M., Guyenet, P.G., 1992. Medullary pathway of the Bezold-Jarisch reflex in the rat. Am. J. Physiol. 263R1195–R1202.PubMedGoogle Scholar
- Viard, E., Sapru, H.N., 2002. Cardiovascular responses to activation of metabotropic glutamate receptors in the nTS of the rat. Brain Res. 952308–332.PubMedCrossRefGoogle Scholar
- Watson, M., Roeske, W.R., Vickroy, T.W., Smith, T.L., Akiyami, K., Gulya, K., Duckies, S.P., Serra, M., Adern, A., Nordberg, A., Gehlert, D.R., Wamsley, J.K., Yamamura, H.I., 1986. Biochemical and functional basis of putative muscarinic receptor subtypes and its implications. Trends Pharmacol. Sci. Suppl. 46–55.Google Scholar
- Willette, R.N., Barcas, P.P., Krieger, A.J., Sapru, H.N., 1983a. Vasopressor and depressor areas in the rat medulla: identification by L-glutamate microinjections. Neuropharmacol. 221071–1079.CrossRefGoogle Scholar
- Willette, R.N., Krieger, A.J., Barcas, P.P., Sapru, H.N., 1983b. Medullary GABA receptors and the regulation of blood pressure in the rat. J. Pharmacol. Exp. Ther. 226893–899.PubMedGoogle Scholar
- Willette, R.N., Krieger, A.J., Barcas, P.P., Sapru, H.N., 1984a. Endogenous GABAergic mechanisms in the medulla and the regulation of blood pressure. J. Pharmacol. Exp. Ther. 23034–39.PubMedGoogle Scholar
- Willette, R.N., Punnen, S., Krieger, A.J., Sapru, A.J., 1984b. Interdependence of rostral and caudal ventrolateral medullary areas in the control of blood pressure. Brain Res. 321169–174.PubMedCrossRefGoogle Scholar
- Xia, Y., Haddad, G.G., 1991. Ontogeny and distribution of opioid receptors in the rat brainstem. Brain Res. 549181–193.PubMedCrossRefGoogle Scholar
- Zadina, J.E., Hackler, L., Ge, L.J., Kastin, A.J., 1997. A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386499–502.PubMedCrossRefGoogle Scholar
- Zhang, J., Mifflin, S.W., 1998. Differential roles for NMDA and non-NMDA receptor subtypes in baroreceptor afferent integration in the nucleus of the solitary tract of the rat. J. Physiol. (Lond.) 511.3733–745.CrossRefGoogle Scholar