Endocranial Volume and Optic Foramen Size in Parapithecus grangeri

  • Eliot C. Bush
  • Elwyn L. Simons
  • David J. Dubowitz
  • John M. Allman
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

Abstract

The living anthropoids tend to have large brains, small olfactory bulbs, and high acuity vision compared with other primates (Baron et al., 1983; Stephan et al., 1981). An interesting possibility is that an increasing emphasis on vision was in some way related to increases in brain size in the anthropoid lineage. It is certainly plausible that changes in sensory behavior would necessitate major changes in the brain. Comparative neuroanatomical data has suggested that brain size increases were related to growth in the parvocellular layers of the lateral geniculate nucleus, an early stage in the visual processing hierarchy (Barton, 1998).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allman, J., 2000, Evolving Brains, Scientific American Books.Google Scholar
  2. Baron, G., Frahm, H., Bhatnagar, K., and Stephan, H., 1983, Comparison of brain structure volumes in insectivora and primates.3. main olfactory-bulb (mob). J. Hirnforsch. 24(5): 551–568.PubMedGoogle Scholar
  3. Barton, R. A., Oct 1998, Visual specialization and brain evolution in primates, Proc. R. Soc. Lond., B., BioL Sci. 265(1409), 1933–1937.CrossRefGoogle Scholar
  4. Baxter, B., and Sorenson, J., 1981, Factors affecting the measurement of size and ct-number in computed-tomography, Investigative Radiology 16(4): 337–341.PubMedCrossRefGoogle Scholar
  5. Conroy, G., 1987, Problems of body-weight estimation in fossil primates, Int. J.Primatol. 8(2): 115–137.CrossRefGoogle Scholar
  6. Gingerich, P., Smith, B., and Rosenberg, K., 1982, Allometric scaling in the dentition of primates and prediction of body-weight from tooth size in fossils, Am. J. Phys. Anthropol. 58(1): 81–100.PubMedCrossRefGoogle Scholar
  7. Kay, R., and Fleagle, J., 1988, The phylogenetic position of parapithecidae (primates, anthropoidea), Am. J. Phys. Anthropol. 75(2): 230.Google Scholar
  8. Kay, R, and Kirk, E., 2000, Osteological evidence for the evolution of activity pattern and visual acuity in primates, Am. J. Phys. Anthropol. 113(2): 235–262.PubMedCrossRefGoogle Scholar
  9. Kay, R., and Simons, E., 1980, The ecology of oligocene African anthropoids, Int. J. Primatol. 1(1): 21–37.CrossRefGoogle Scholar
  10. Keating, C., and Keating, E., 1982, Visual scan patterns of rhesus monkeys viewing faces, Perception, 11: 211–219.PubMedCrossRefGoogle Scholar
  11. Kirk, E. C., and Kay, F., 2003, The Evolution of High Visual Acuity in the Anthropoidea, in: Anthropoid Origins: New Visions, C. Ross, and R. F. Kay, eds., Kluwer/Plenum Press, New York, pp. 539–602 (This Volume).Google Scholar
  12. Kyes, R, and Candland, D., 1987, Baboon (papio-hamadryas) visual preferences for regions of the face, J. Comp. Psycho. 101(4): 345–348.CrossRefGoogle Scholar
  13. Parr, L., Winslow, J., Hopkins, W., and de Waal, F., 2000, Recognizing facial cues: Individual discrimination by chimpanzees (pan troglodytes) and rhesus monkeys (macaca mulatta), J Comp. Psychol. 114(1): 47–60.PubMedCrossRefGoogle Scholar
  14. Ross, C., Williams, B., and Kay, R, 1998, Phylogenetic analysis of anthropoid relationships, J. Hum. Evol. 35(3): 221–306.CrossRefGoogle Scholar
  15. Simons, E., 1993, New endocasts of aegyptopithecus—oldest well-preserved record of the brain in anthropoidea, Am. J. Sci. 293A(SI): 383–390.CrossRefGoogle Scholar
  16. Simons, E., 2001, The cranium of parapithecus grangeri, an egyptian oligocene anthropoidean primate, Proc. Nat. Acad. Sci. USA 98(14): 7892–7897.PubMedCrossRefGoogle Scholar
  17. Simons, E. L., 2003, The Cranium and Adaptations of Parapithecus granger, in: Anthropoid Origins: New Visions, C. Ross, and R. F. Kay, eds., Kluwer/Plenum Press, New York, pp. 183–204 (This Volume).Google Scholar
  18. Spoor, C., Zonneveld, F., Macho, G., 1993, Linear measurements of cortical bone and dental enamel by computed-tomography—applications and problems, Am. J. Phys. Anthropol. 91(4): 469–484.PubMedCrossRefGoogle Scholar
  19. Stephan, H., Baron, G., and Frahm, H., 1991, Insectivora, Springer-Verlag, New York.CrossRefGoogle Scholar
  20. Stephan, H., Frahm, H., and Baron, G., 1981, New and revised data on volumes of brain structures in insectivores and primates, Folia Primatol. (Basel) 35(1): 1–29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Eliot C. Bush
    • 1
  • Elwyn L. Simons
    • 2
  • David J. Dubowitz
    • 3
  • John M. Allman
    • 4
  1. 1.Biology DivisionCalifornia Institute of TechnologyCalifornia
  2. 2.Department of Biological Anthropology and AnatomyDuke University and Duke University Primate CenterUSA
  3. 3.Center for Functional MRI, Department of RadiologyUniversity of CaliforniaSan DiegoUSA
  4. 4.Biology DivisionCalifornia Institute of TechnologyUSA

Personalised recommendations