Molecular Phylogeny and Dating of Early Primate Divergences

  • Eduardo Eizirik
  • William J. Murphy
  • Mark S. Springer
  • Stephen J. O’Brien

Abstract

Rapid evolutionary radiations characterize many higher-level taxa. This pattern of diversification poses a challenge for accurate phylogenetic reconstruction, since the few synapomorphies defining short internal branches are often overwritten over long periods of evolutionary time, making determination of homology difficult and rendering the outgroup method of rooting prone to error for both molecular and morphological systematic investigations (Carroll, 1988; Novacek, 1992; Swofford et al., 1996). These issues can be addressed and hopefully overcome by employing comprehensive taxon sampling, large numbers of characters, multiple data sets (derived from different sources), and diverse inferential techniques. In spite of being limited to samples of only living or recently extinct taxa, molecular data have great potential to help decipher the pattern and timing of rapid and ancient radiations. Specifically, they provide a means to collect larger numbers of phylogenetic characters than most morphological data matrices, and present a simpler and better understood mode of evolution that can be currently modeled within a maximum likelihood (ML) framework (e.g., Goldman et al., 2000; Swofford et al., 1996; Whelan et al., 2001).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benton, M. J., 1993, The Fossil Record 2, Chapman & Hall, London.Google Scholar
  2. Benton, M. J., 1999, Early origins of modern birds and mammals: molecules vs. morphology, BioEssays 21:1043–1051.PubMedCrossRefGoogle Scholar
  3. Bromham, L., Phillips, M. J., and Penny, D., 1999, Growing up with dinosaurs: Molecular dates and the mammalian radiation, Tr. Ecol. Evol. 14: 113–118.CrossRefGoogle Scholar
  4. Buckley, T. R., 2002, Model misspecification and probabilistic tests of topology: evidence from empirical data sets, Syst. Biol. 51: 509–523.PubMedCrossRefGoogle Scholar
  5. Carroll, R. L., 1988, Vertebrate Paleontology and Evolution, Freeman and Co, New York.Google Scholar
  6. D’Erchia, A. M., Gissi, C., Pesole, G., Saccone, C., and Arnason, U., 1996, The guinea pig is not a rodent, Nature 381: 597–600.Google Scholar
  7. Easteal, S., 1999, Molecular evidence for the early divergence of placental mammals, BioEssays 21:1052–1058.PubMedCrossRefGoogle Scholar
  8. Eizirik, E., Murphy, W. J., and O’Brien, S. J., 2001, Molecular dating and biogeography of the early placental mammal radiation, J. Hered. 92: 212–219.PubMedCrossRefGoogle Scholar
  9. Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J. Jr., 1999, Evolutionary and preservational constraints on origins of biologic groups: Divergence times of eutherian mammals, Science 283:1310–1314.PubMedCrossRefGoogle Scholar
  10. Gatesy, J., Milinkovitch, M., Waddell, V., and Stanhope, M., 1999, Stability of cladistic relationships between Cetacea and higher-level artiodactyl taxa, Syst. Biol. 48: 6–20.PubMedCrossRefGoogle Scholar
  11. Goldman, N., Anderson, J. P., and Rodrigo, A. G., 2000, Likelihood-based tests of topologies in phylogenetics, Syst. Biol. 49: 652–670.PubMedCrossRefGoogle Scholar
  12. Graur, D., Hide, W. A., and Li, W.-H., 1991, Is the guinea-pig a rodent? Nature 351: 649–652.PubMedCrossRefGoogle Scholar
  13. Graur, D., Duret, L., and Gouy, M., 1996, Phylogenetic position of the order Lagomorpha (rabbits, hares, and allies), Nature 379: 333–335.PubMedCrossRefGoogle Scholar
  14. Groves, C. P., 1989, A Theory of Human and Primate Evolution, Clarendon Press, Oxford.Google Scholar
  15. Hillis, D. M., 1996, Inferring complex phylogenies, Nature 383: 130–131.PubMedCrossRefGoogle Scholar
  16. Huelsenbeck, J. P. and Ronquist, F., 2001, MRBAYES: Bayesian inference of phylogenetic trees, Bioinformatics 17: 754–755.PubMedCrossRefGoogle Scholar
  17. Huelsenbeck, J. P., Ronquist, F., Nielsen, R, and Bollback, J. P., 2001, Bayesian inference of phylogeny and its impact on evolutionary biology, Science 294: 2310–2314.PubMedCrossRefGoogle Scholar
  18. Kay, R. F., Ross, C., and Williams, B. A., 1997, Anthropoid origins, Science 275: 797–804.PubMedCrossRefGoogle Scholar
  19. Kishino, H. and Hasegawa, M., 1989, Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea, J. Mol. Evol. 29: 170–179.PubMedCrossRefGoogle Scholar
  20. Kishino, H., Thorne, J. L., and Bruno, W. J., 2001, Performance of a divergence time estimation method under a probabilistic model of rate evolution, Mol. Biol. Evol. 18: 352–361.PubMedCrossRefGoogle Scholar
  21. Kumar, S. and Hedges, S. B., 1998, A molecular timescale for vertebrate evolution, Nature 392: 917–920.PubMedCrossRefGoogle Scholar
  22. Lavergne, A., Douzery, E., Stichler, T., Catzeflis, F. M., and Springer, M. S., 1996, Interordinal mammalian relationships: Evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences, Mol. Phylogenet. Evol. 6: 245–258.PubMedCrossRefGoogle Scholar
  23. Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., et al., 2001, Parallel adaptive radiations in two major clades of placental mammals, Nature 409: 610–614.PubMedCrossRefGoogle Scholar
  24. Martin, A. P. and Palumbi, S. R., 1993, Body size, metabolic rate, generation time, and the molecular clock, Proc. Natl. Acad. Sci. USA 90: 4087–4091.PubMedCrossRefGoogle Scholar
  25. Martin, R. D., 1990, Primate Origins and Evolution: A Phylogenetic Reconstruction, Princeton University Press, Princeton.Google Scholar
  26. Martin, R D., 1993, Primate origins: Plugging the gaps, Nature 363: 223–234.PubMedCrossRefGoogle Scholar
  27. McKenna, M. C. and Bell, S. K., 1997, Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  28. Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y.-P., Ryder, O. A., and O’Brien, S. J., 2001a, Molecular phylogenetics and the origins of placental mammals, Nature 409: 614–618.PubMedCrossRefGoogle Scholar
  29. Murphy, W. J., Eizirik, E., O’Brien, S. J., Madsen, O., Scally, M., Douady, C. J., et al., 2001b, Resolution of the early placental mammal radiation using Bayesian phylogenetics, Science 294: 2348–2351.PubMedCrossRefGoogle Scholar
  30. Novacek, M. J., 1992, Mammalian phylogeny: Shaking the tree, Nature 356: 121–125.PubMedCrossRefGoogle Scholar
  31. Pryer, K. M., Schneider, H., Smith, A. R, Cranfill, R., Wolf, P. G., Hunt, J. S., and Sipes, S. D., 2001, Horsetails and ferns are a monophyletic group and the dosest living relatives to seed plants, Nature 409: 618–622.PubMedCrossRefGoogle Scholar
  32. Qiu, Y. L., Lee, J., Bernasconi-Quadroni, F., Soltis, D. E., Soltis, P. S., Zanis, M., et al., 1999, The earliest angiosperms: Evidence from mitochondrial, plastid, and nuclear genomes, Nature 402: 404–407.PubMedCrossRefGoogle Scholar
  33. Rambaut, A. and Grassly, N. C., 1997, Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees, Comput. Applic. Biosci. 13: 235–238.Google Scholar
  34. Reyes, A., Gissi, C., Pesole, G., Catzeflis, F., and Saccone, C., 2000, Where do rodents fit? Evidence from the complete mitochondrial genome of Sciurus vulgaris, Mol. Biol. Evol. 17: 979–983.PubMedCrossRefGoogle Scholar
  35. Reyes, A., Pesole, G., and Saccone, C., 1998, Complete mitochondrial DNA sequence of the fat dormouse, Glis glis: Further evidence of rodent paraphyly, Mol. Biol. Evol. 15: 499–505.PubMedCrossRefGoogle Scholar
  36. Ross, C., Williams, B., and Kay, R. F., 1998, Phylogenetic analysis of anthropoid relationships, J. Human Evol. 35: 221–306.CrossRefGoogle Scholar
  37. Schmitz, J., Ohme, M., and Zischler, H., 2001, SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates, Genetics 157: 777–784.PubMedGoogle Scholar
  38. Schmitz, J., Ohme, M., and Zischler, H., 2002, The complete mitochondrial sequence of Tarsius bancanus: Evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA, Mol. Biol. Evol. 19: 544–553.PubMedCrossRefGoogle Scholar
  39. Seiffert, E. R., Simons, E. L., and Attia, Y., 2003, Fossil evidence for an ancient divergence of lorises and galagos. Nature 422: 421–424.PubMedCrossRefGoogle Scholar
  40. Seiffert, E. R., Simons, E. L., and Simons, C. V. M, (this volume) Phylogenetic, biogeographic, and adaptive implications of new fossil evidence bearing on crown anthropoid origins and early stem catarrhine evolution.Google Scholar
  41. Shoshani, J. and McKenna, M. C., 1998, Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data, Mol. Phylogenet. Evol. 9: 572–584.PubMedCrossRefGoogle Scholar
  42. Simpson, G. G., 1945, The principles of classification and a classification of mammals, Bull. Am. Mus. Nat. Hist. 85: 1–350.Google Scholar
  43. Soltis, P. S., Soltis, D. E., and Chase, M. W., 1999, Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology, Nature 402: 402–404.PubMedCrossRefGoogle Scholar
  44. Springer, M. S., Cleven, G. C., Madsen, O., de Jong, W. W., Waddell, V. G., Armine, H. M., and Stanhope, M. J., 1997, Endemic African mammals shake the phylogenetic tree, Nature 388: 61–64.PubMedCrossRefGoogle Scholar
  45. Springer, M. S., DeBry, R. W., Douady, C., Amrine, H. M., Madsen, O., de Jong, W. W., and Stanhope, M. J., 2001, Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction, Mol. Biol. Evol. 18:132–143.PubMedCrossRefGoogle Scholar
  46. Springer, M.S., Murphy, W.J., Eizirik, E., O’Brien, S. J., 2003, Placental mammal diversification and the Cretaceous-Tertiary boundary, Proc. Natl. Acad. Sci. USA 100:1056–1061.PubMedCrossRefGoogle Scholar
  47. Swofford, D. L., Olsen, G., Waddell, P., and Hillis, D. M., 1996, Phylogenetic inference, in: Moleeular Systematics. D.M. Hillis, C. Moritz, and B. Mable, eds., Sinauer, Sunderland, pp. 407–514.Google Scholar
  48. Swofford D. L., 1998, PAUP*: Phylogenetic Analysis Using Parsimony and Other Methods. Sinauer, Sunderland.Google Scholar
  49. Takezaki, N., Rzhetsky, A., and Nei, M., 1995, Phylogenetic test of the molecular clock and linearized trees, Mol. Biol. Evol. 12: 823–833.PubMedGoogle Scholar
  50. Tavaré, S., Marshall, C. R., Will, O., Soligo, C., and Martin, R. D., 2002, Using the fossil record to estimate the age of the last common ancestor of extant primates, Nature 416: 726–729.PubMedCrossRefGoogle Scholar
  51. Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M., Springer, M. S., and Stanhope, M. J., 2000, Molecular evidence regarding the origin of echolocation and flight in bats, Nature 403: 188–192.PubMedCrossRefGoogle Scholar
  52. Thorne, J. L., Kishino, H., and Painter, I. S., 1998, Estimating the rate of evolution of the rate of molecular evolution, Mol. Biol. Evol. 15: 1647–1657.PubMedCrossRefGoogle Scholar
  53. Whelan, S., Lio, P., and Goldman, N., 2001, Molecular phylogenetics: State-of-the-art methods for looking into the past, Trends Genet. 17: 262–272.PubMedCrossRefGoogle Scholar
  54. Yoder, A. D., and Yang, Z., 2000, Estimation of primate speciation dates using local molecular clocks, Mol. Biol. Evol. 17: 1081–1090.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Eduardo Eizirik
    • 1
  • William J. Murphy
    • 1
  • Mark S. Springer
    • 2
  • Stephen J. O’Brien
    • 1
  1. 1.Laboratory of Genomic DiversityNational Cancer InstituteFrederickUSA
  2. 2.Department of BiologyUniversity of CaliforniaRiversideUSA

Personalised recommendations