Angiogenesis in Brain Tumors pp 3-32

Part of the Cancer Treatment and Research book series (CTAR, volume 117)

Vasculogenesis and Angiogenesis

  • Sybill Patan


Two distinct mechanisms, vasculogenesis and angiogenesis implement the formation of the vascular network in the embryo. Vasculogenesis gives rise to the heart and the first primitive vascular plexus inside the embryo and in its surrounding membranes, as the yolk sac circulation. Angiogenesis is responsible for the remodeling and expansion of this network. While vasculogenesis refers to in situ differentiation and growth of blood vessels from mesodermal derived hemangioblasts, angiogenesis comprises two different mechanisms: endothelial sprouting and intussusceptive microvascular growth (IMG). The sprouting process is based on endothelial cell migration, proliferation and tube formation. IMG divides existing vessel lumens by formation and insertion of tissue folds and columns of interstitial tissue into the vessel lumen. The latter are termed interstitial or intervascular tissue structures (ITSs) and tissue pillars or posts. Intussusception also includes the establishment of new vessels by in situ loop formation in the wall of large veins. The molecular regulation of these distinct mechanisms is discussed in respect to the most important positive regulators, VEGF and its receptors flk-1 (KDR) and flt-1, the Angiopoietin/tie system and the ephrin-B/EpH-B system. The cellular mechanisms and the molecular regulation of angiogenesis in the pathological state are summarized and the differences of physiological and pathological angiogenesis elaborated.


vasculogenesis blood vessels endothelial cells intussusceptive microvascular growth IMG interstitial tissue structures ITS angiopoietin Tie ephrin-B eph-B angiogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poole TJ, Coffin JD. Vasculogenesis and angiogenesis: Two distinct morphogenetic mechanisms establish the embryonic vascular pattern. J. Exp. Zool. 251: 224–2331, 1989.PubMedCrossRefGoogle Scholar
  2. 2.
    Coffin JD, Harrison J, Schwartz S, Heimark R. Angioblast differentiation and morpho-genesis of the vascular endothelium in the mouse embryo. Dev. Biol. 148: 51–62, 1991.PubMedCrossRefGoogle Scholar
  3. 3.
    Miquerol L, Gertsenstein M, Harpal K, Rossant J, Nagy A. Multiple developmental roles of VEGF suggested by a LacZ-tagged allele. Dev. Biol. 212: 307–322, 1999.PubMedCrossRefGoogle Scholar
  4. 4.
    Patan S, Heanni B, Burri PH. Implementation of intussusceptive microvascular growth in the chicken chorio-allantoic membrane (CAM): Pillar formation by folding of the capillary wall. Microvasc. Res. 51: 80–98, 1996.PubMedCrossRefGoogle Scholar
  5. 5.
    Patan S, Haenni B, Burri PH. Implementation of intussusceptive microvascular growth in the chicken chorio-allantoic membrane (CAM): Pillar formation by capillary fusion. Microvasc. Res. 53: 33–52, 1997.PubMedCrossRefGoogle Scholar
  6. 6.
    Patan S. TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc. Res. 56: 1–21, 1998.PubMedCrossRefGoogle Scholar
  7. 7.
    Risau W. Vasculogenesis, angiogenesis and endothelial cell differentiation during embryonic development. In: Feinberg RN, Sherer GK, Auerbach R (eds). The development of the vascular system. Issues Biomed., Karger, Basel 14: 58–68, 1991.Google Scholar
  8. 8.
    Risau W. Mechanisms of angiogenesis. Nature 386: 671–674, 1997.PubMedCrossRefGoogle Scholar
  9. 9.
    His W. Untersuchungen über die erste Anlage des Wirbelthierleibes. Leipzig, 1868.Google Scholar
  10. 10.
    Reagan FP. Vascularization phenomena in fragments of embryonic bodies completely isolated from yolk-sac blastoderm. Anat. Rec. 9: 329–341, 1915.CrossRefGoogle Scholar
  11. 11.
    Stockard GR. The origin of blood and vascular endothelium in embryos without a circulation of the blood and in the normal embryo. Am. J. Anat. 18: 227–327, 1915.CrossRefGoogle Scholar
  12. 12.
    Sabin FR. Studies on the origin of blood-vessels and of red blood-corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contributions to Embryology 36: 213–259, 1920.Google Scholar
  13. 13.
    Risau W, Flamme I. Vasculogenesis. Annu. Rev. Cell Dev. Biol.11: 73–91, 1995.CrossRefGoogle Scholar
  14. 14.
    Pardanaud L, Altmann C, Kitos P, Dieterlen-Lièvre F, Buck CA. Vasculogenesis in the early quail blastodisc as studied with a monclonal antibody recognizing endothelial cells. Development 100: 339–349, 1987.PubMedGoogle Scholar
  15. 15.
    Pardanaud L, Yassine F, Dieterlen-Lièvre F. Relationship between vasculogenesis, angiogenesis and hematopoiesis during avian ontogeny. Development 105: 473–485, 1989.PubMedGoogle Scholar
  16. 16.
    Sabin FR. Origin and development of the primitive vessels of the chick and of the pig. Contrib. Embryol. Carnegie Inst. Publ. Wash. 6: 61–124, 1917.Google Scholar
  17. 17.
    Poole TJ, Coffin D. Morphogenetic mechanisms in avian vascular development. In: Feinberg, RN, Sherer GK, Auerbach R (eds). The development of the vascular system. Issues Biomed., Karger, Basel 14: 25–36, 1991.Google Scholar
  18. 18.
    Noden DM. The formation of avian embryonic blood vessels. Am. Rev. Respir. Dis. 140: 1097–1103, 1989.PubMedCrossRefGoogle Scholar
  19. 19.
    Le Douarin NM. Cell migration in embryos. Cell 38: 353–360, 1984.PubMedCrossRefGoogle Scholar
  20. 20.
    Christ B, Poelmann RE, Mentink MMT, Gittenberger-De Groot AC. Vascular endothelial cells migrate centripetally within the embryonic arteries. Anat. Embryol 181: 333 339, 1990.Google Scholar
  21. 21.
    Kurz H, Gartner T, Eggli PS, Christ B. First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev. Biol. 173:133–47, 1996.PubMedCrossRefGoogle Scholar
  22. 22.
    Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lièvre F. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122: 1363–1371, 1996.PubMedGoogle Scholar
  23. 23.
    Flamme I. Is extraembryonic angiogensis in the chick embryo controlled by the endoderm? Anat. Embryo]. 180: 259–272, 1989.CrossRefGoogle Scholar
  24. 24.
    Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neuroectodermal cell fate in the mouse embryo. Development 128: 1717–1730, 2001.PubMedGoogle Scholar
  25. 25.
    Flamme I, Breier G, Risau W. Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev. Biol. 169: 699–712, 1995.PubMedCrossRefGoogle Scholar
  26. 26.
    Kremer C, Breier G, Risau W, Plate KH. Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res. 57: 3852–3859, 1997.PubMedGoogle Scholar
  27. 27.
    Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood-island formation and vasculogenesis in FLK-1-deficient mice. Nature 376: 62–66. 1995.PubMedCrossRefGoogle Scholar
  28. 28.
    Shalaby F, Ho J, Stanford WL, Fischer WD, Schuh AC, Schwartz L, Bernstein A, Rossant J A. requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 89: 981–990, 1997.PubMedCrossRefGoogle Scholar
  29. 29.
    Breier G, Clauss M, Risau W. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligands suggests a paracrine regulation of murine vascular development. Dev. Dyn. 204: 228–239, 1995.PubMedCrossRefGoogle Scholar
  30. 30.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66–70, 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Ferrara N, Carver Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MMW. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: 439–442, 1996.PubMedCrossRefGoogle Scholar
  32. 32.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein L, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435–439, 1996.PubMedCrossRefGoogle Scholar
  33. 33.
    Nagy A, Rossant J. Production and analysis of ES cell aggregation chimeras. In: Gene Targeting: A practical Approach (ed. A. Joyner), sec. ed., 177–206, New York, Oxford University Press, 1999.Google Scholar
  34. 34.
    Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127: 3941–3946, 2000.PubMedGoogle Scholar
  35. 35.
    Dickson MC, Martin JS, Cousins FM, Kulkami AB, Karlsson S, Akhurst RJ. Defective hematopoiesis and vasculogenesis in transforming growth-factor-betal knockout mice. Development 121: 1845–1854,1995.PubMedGoogle Scholar
  36. 36.
    Oshima M, Oshima H, Taketo MM. TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev. Biol. 179: 297–302, 1996.PubMedCrossRefGoogle Scholar
  37. 37.
    Pepper MS. Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev. 8: 21–43, 1997.PubMedCrossRefGoogle Scholar
  38. 38.
    Agah R, Prasad KS, Linnemann R, Firpo MT, Quertermous T, Dichek DA. Cardiovascular overexpression of transforming growth factor-I31 causes abnormal yolk sac vasculogenesis and early embryonic death. Circ. Res. 86: 1024–1030, 2000.PubMedCrossRefGoogle Scholar
  39. 39.
    Thompson MA, Ransom DG, Pratt SJ, MacLennan H, Kieran MW, Detrich III HW, Vail B, Huber TL, Paw B, Brownlie AJ, Oates AC, Fritz A, Gates MA, Amores A, Bahary N, Talbot WS, Her H, Beier DR, Postlethwait JH, Zon LI.. The cloche and spade-tail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197:248269, 1998.Google Scholar
  40. 40.
    Harris CRS. The heart and the vascular system in ancient Greek medicine. Clarendon Press, Oxford, 1973.Google Scholar
  41. 41.
    Fülleborn F. Beiträge zur Entwicklung der Allantois der Vögel. Inaug. Diss., Francke, Berlin, 1895.Google Scholar
  42. 42.
    Danchakoff V. The position of the respiratory vascular net in the allantois of the chick. Am. J. Anat. 21: 407–420, 1917.CrossRefGoogle Scholar
  43. 43.
    Clark ER. Studies on the growth of blood vessels, by observation of living tadpoles and by experiments on chick embryos. Anat. Rec. 9: 67–68, 1915.Google Scholar
  44. 44.
    Clark ER. Studies on the growth of blood-vessels in the tail of the frog larva - by observation and experiment on the living animal. Am. J. Anat. 23: 37–88, 1918.CrossRefGoogle Scholar
  45. 45.
    Clark ER, Clark EL: Microscopic observations on the growth of blood capillaries in the living mammal. Am. J. Anat. 64: 251–299, 1939.CrossRefGoogle Scholar
  46. 46.
    Ausprunk D, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14: 53–65, 1977.PubMedCrossRefGoogle Scholar
  47. 47.
    Gimbrone MA Jr., Cotran RS, Leapman SB, Folkman J. Tumor growth and neovascularization: an experimental model using the rat cornea. J. Natl. Cancer Inst. 52: 413–427, 1974.PubMedGoogle Scholar
  48. 48.
    Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res. 46: 467–473, 1986.PubMedGoogle Scholar
  49. 49.
    Short RHD. Alveolar epithelium in relation to growth of the lung. Philos. Trans. R. Soc. London Ser. B 235: 35–87, 1950.CrossRefGoogle Scholar
  50. 50.
    Caduff JH, Fischer LC, Burri PH. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat. Rec. 216: 154–164, 1986.PubMedCrossRefGoogle Scholar
  51. 51.
    Burri PH, Tarek MR. A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat. Rec. 228: 35–45, 1990.PubMedCrossRefGoogle Scholar
  52. 52.
    Van Groningen JP, Wenink ACG, Testers LHM. Myocardial capillaries: Increase in number by splitting of existing vessels. Anat. Embryol. 184: 65–70, 1991.PubMedCrossRefGoogle Scholar
  53. 53.
    Patan S, Alvarez MJ, Schittny JC, Burri PH. Intussusceptive microvascular growth: A common alternative to endothelial sprouting. Arch. Histol. Cytol. 55: 65–75, Suppl., 1992.PubMedCrossRefGoogle Scholar
  54. 54.
    Patan S, Haenni B, Burri PH. Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anat. Embryol. 187: 121–130, 1993.PubMedCrossRefGoogle Scholar
  55. 55.
    Patan S, Munn LL, Jain RK. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: A novel mechanism of tumor angiogenesis. Microvasc. Res. 51: 260–272, 1996.PubMedCrossRefGoogle Scholar
  56. 56.
    Patan S, Tanda S, Roberge S, Jones RC, Jain RK, Munn LL. Vascular morphogenesis and remodeling in a human tumor xenograft. Blood vessel formation and growth in the ovarian pedicle after ovariectomy. Circ. Res. 89:723–731, 2001.PubMedCrossRefGoogle Scholar
  57. 57.
    Patan S, Munn LL, Tanda S, Roberge S, Jain RK, Jones RC. Vascular morphogenesis and remodeling in a model of tissue repair. Blood vessel formation and growth after ovariectomy and tumor implantation. Circ. Res. 89:732–739, 2001.PubMedCrossRefGoogle Scholar
  58. 58.
    St. Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW. Genes expressed in human tumor endothelium. Science 289:1197–1202, 2000.PubMedCrossRefGoogle Scholar
  59. 59.
    Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos, GD. Requisite role ofAngiopoietin-1, a ligand for the TIE2 receptor during embryonic angiogenesis. Cell 87: 1171–1180, 1996.PubMedCrossRefGoogle Scholar
  60. 60.
    Tardy Y, Resnick N, Nagel T, Gimbrone MA Jr, Dewey CF Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17: 3102–3106, 1997.Google Scholar
  61. 61.
    Sumpio BE, Du W, Galagher G, Wang X, Khachigian LM, Collins T, Gimbrone MA Jr, Resnick N. Regulation of PDGF-B in endothelial cells exposed to cyclic strain. Arterioscler. Thromb. Vasc. Biol. 18: 349–355, 1998.Google Scholar
  62. 62.
    Nagel T, Resnick N, Dewey CF Jr., Gimbrone MA Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19: 1825–1834, 1999.CrossRefGoogle Scholar
  63. 63.
    Ware JA, Simons M. Angiogenesis in ischemic heart disease. Nature Med. 3: 158–164, 1997.PubMedCrossRefGoogle Scholar
  64. 64.
    Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radijewski C, Maisonpierre PC, Yancopoulos GD. Isolation of angiopoietin-1, a ligand for the angiogenic TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161–1169,1996.Google Scholar
  65. 65.
    Wang HU, Chen CF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93: 741–753, 1998.PubMedCrossRefGoogle Scholar
  66. 66.
    Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R. Roles of ephrin-B ligands and EphB receptors in cardiovascular development: Demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 3: 295–306, 1999.CrossRefGoogle Scholar
  67. 67.
    Keyt BA, Nguyen HV, Berleau LT, Duarte CM, Park J, Chen H, Ferrara N. Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors: Generation of receptor-selective VEGF variants by site-directed mutagenesis. J. Biol. Chem. 271: 5638–5646, 1996.PubMedCrossRefGoogle Scholar
  68. 68.
    Carmeliet P, Ng Y-S, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard J-C, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D’Amore PA, Shima DT. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5: 495–502, 1999.PubMedCrossRefGoogle Scholar
  69. 69.
    Barleon B, Siemeister G, Martiny-Baron G, Weindel K, Herzog C, Marmé D. Vascular endothelial growth factor up-regulates its receptor fms-like kinase 1 (Flt-l) and a soluble variant of Flt-1 in human vascular endothelial cells. Cancer Res. 57: 5421–5425, 1997.PubMedGoogle Scholar
  70. 70.
    Dumont DJ, Fong G-H, Puri MC, Gradwohl G, Alitalo K, Breitman ML. Vascularization of the mouse embryo: A study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev. Dyn. 203: 80–92, 1995.PubMedCrossRefGoogle Scholar
  71. 71.
    Partanen J, Armstrong E, Makela TP, Korhonen J, Sandberg M, Renkonen R, Knuutila S, Huebner K, Alitalo K. A novel endothelial surface receptor tyrosine kinase with ex tracellularepidermal growth factor homology domains. Mol. Cell. BioI. 12: 1698–1707, 1992.Google Scholar
  72. 72.
    Iwama A, Hamaguchi I, Hashijama M, Murajama Y, Yasunaga K, Suda T. Molecular cloning and characterization of mouse Tie and Tek receptor tyrosine kinase genes and their expression in hematopoietic stem cells. Biochem. Biophys. Res. Commun. 195: 301–309, 1993.Google Scholar
  73. 73.
    Maisonpierre PC, Goldfarb M, Yancopoulos GD, Gao G. Distinct rat genes with related profiles of expression define a TIE receptor tyrosine kinase family. Oncogene 8: 1631–1637, 1993.Google Scholar
  74. 74.
    Sato TN, Quin Y, Kozak CA, Audus KL. tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc. Natl. Acad. Sci. USA 90: 9355–9358, 1993.CrossRefGoogle Scholar
  75. 75.
    Schnurch H, Risau W. Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119: 957–968, 1993.PubMedGoogle Scholar
  76. 76.
    Ziegler SF, Bird TA, Schneringer KA, Schooley KA, Baum PR. Molecular cloning and characterization of a novel receptor protein tyrosine kinase from human placenta. Oncogene 8: 663–670, 1993.PubMedGoogle Scholar
  77. 77.
    Dumont DJ, Gradwohl G, Fong G-H, Puri MC, Gerstenstein M, Auerbach A, Breitman ML. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 8: 1897–1909, 1994.Google Scholar
  78. 78.
    Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Quin Y. Distinct roles of the receptor tyrosine kinases TIE1 and TIE2 in blood vessel formation. Nature 376: 70–74, 1995.PubMedCrossRefGoogle Scholar
  79. 79.
    Puri MC, Rossant J, Alitalo K, Bernstein A, Partanen, J. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J. 14: 5884–5891, 1995.PubMedGoogle Scholar
  80. 80.
    Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J. Biol. Chem. 273: 18514–18521, 1998.PubMedCrossRefGoogle Scholar
  81. 81.
    Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W. Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr. Biol. 8: 529–532, 1998.PubMedCrossRefGoogle Scholar
  82. 82.
    Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab. Invest. 79: 213–223, 1999.PubMedGoogle Scholar
  83. 83.
    Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD. Increased vascularization in mice overexpressing angiopoietin-1. Science 282: 468–471, 1998.PubMedCrossRefGoogle Scholar
  84. 84.
    Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ. Res. 83: 233–240, 1998.PubMedCrossRefGoogle Scholar
  85. 85.
    Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55–60, 1997.PubMedCrossRefGoogle Scholar
  86. 86.
    Puri MC, Partanen J, Rossant J, Bernstein A. Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126: 4569–4580, 1999.PubMedGoogle Scholar
  87. 87.
    Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M, Yancopoulos GD. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266: 816–819, 1994.PubMedCrossRefGoogle Scholar
  88. 88.
    Gerety SS, Anderson DJ. Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129: 1397–1410, 2002.PubMedGoogle Scholar
  89. 89.
    Kruger O, Plum A, Kim J-S, Winterhager E, Maxeiner S, Hallas G, Kirchhoff S, Traub O, Lamers WH, Willecke K. Defective vascular development in connexin 45-deficient mice. Development 127: 4179–4193, 2000.PubMedGoogle Scholar
  90. 90.
    Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 11: S37–S43, 2001.PubMedGoogle Scholar
  91. 91.
    Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107: 789–800, 2001.PubMedCrossRefGoogle Scholar
  92. 92.
    Franco del Amo F, Smith DE, Swiatek PJ, Gendron-Maguire M, Greenspan RJ, McMahon AP, Gridley T. Expression of Motch, a mouse homologue of Drosophila Notch, suggests an important role in early postimplantation mouse development. Development 115: 737–745, 1992.Google Scholar
  93. 93.
    Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski, J, Callahan R, Smith GH, Stark KL, Gridley T. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14: 1343–1352, 2000.PubMedGoogle Scholar
  94. 94.
    Eliceiri B. Integrin and growth factor receptor crosstalk. Circ. Res. 89: 1104–1110, 2001.PubMedCrossRefGoogle Scholar
  95. 95.
    Oettgen P. Transcriptional regulation of vascular development. Circ Res 89: 380–388, 2001.PubMedCrossRefGoogle Scholar
  96. 96.
    Boudreau N, Andrews C, Srebrow A, Ravanpay A, Cheresh DA. Induction of the angiogenic phenotype by Hox D3. J. Cell Biol. 139: 257–264, 1997.PubMedCrossRefGoogle Scholar
  97. 97.
    Peng J, Thang L, Drysdale L, Fong G-H. The transcription factor EPAS-1lhypoxiainducible factor 2a plays an important role in vascular remodeling. Proc. Nat. Acad. Sci. 97: 8386–8391, 2000.PubMedCrossRefGoogle Scholar
  98. 98.
    Yamada Y, Pannell R, Forster A, Rabbitts TH. The oncogenic LIM-only transcription factor Lmo2 regulates angiogenesis but not vasaculogenesis in mice. Proc. Nat. Acad. Sci. 97: 320–324, 2000.PubMedCrossRefGoogle Scholar
  99. 99.
    Algire GH, Chalkley HW, Legallais FJ, Park HD. Vascular reaction of normal and malignant tumors in vivo. I. Vascular reactions of mice to wounds and to normal and neo-plastic transplants. J. Natl. Cancer Inst. 6: 73–85, 1945.Google Scholar
  100. 100.
    Greenblatt M, Shubik P. Tumor angiogenesis: Transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl. Cancer Inst. 41: 111–124, 1968.PubMedGoogle Scholar
  101. 101.
    Folkman J, Long DM, Becker FF. Growth and metastasis of tumor organ culture. Cancer 16: 453–467, 1963.PubMedCrossRefGoogle Scholar
  102. 102.
    Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285: 11821186, 1971.Google Scholar
  103. 103.
    Folkman J, Watson K, Ingber DE, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58–61, 1989.PubMedCrossRefGoogle Scholar
  104. 104.
    Good D, Polverini P, Rastinejad F, Beau M, Lemons R, Frazier W, Bouck N. A tumor suppressor-dependent inhibitor of angiogenesis immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 87: 6624–6628, 1990.Google Scholar
  105. 105.
    Dipietro LA. Thrombospondin as a regulator of angiogenesis. In: Rosen E, Goldberg ID (eds). Regulation of angiogenesis. Springer Verlag, Berlin, New York, 295–314, 1997.CrossRefGoogle Scholar
  106. 106.
    O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328, 1994.PubMedCrossRefGoogle Scholar
  107. 107.
    O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell: 88: 277–285, 1997.PubMedCrossRefGoogle Scholar
  108. 108.
    Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Teruja Feldstein J, Wirth P, Gupta G, Tosato G. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J. Exp. Med. 188: 2349–2356, 1998.PubMedCrossRefGoogle Scholar
  109. 109.
    Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295: 140–143, 2002.PubMedCrossRefGoogle Scholar
  110. 110.
    Rastinejad F, Polverini PJ, Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56: 345–355, 1989.PubMedCrossRefGoogle Scholar
  111. 1l1.
    Bouck NP. Tumor angiogenesis: The role of oncogenes and tumor suppressor genes. Cancer Cells. 2: 179–185, 1990.PubMedGoogle Scholar
  112. 112.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1:27–31, 1995a.CrossRefGoogle Scholar
  113. 113.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364, 1996.PubMedCrossRefGoogle Scholar
  114. 114.
    Jain RK. Determinants of tumor blood flow: A review. Cancer Res. 48: 2641–2658, 1988.PubMedGoogle Scholar
  115. 115.
    Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315:1650–1659, 1986.PubMedCrossRefGoogle Scholar
  116. 116.
    Nagy JA, Morgan ES, Herzberg KT, Manseau EJ, Dvorak AM, Dvorak HF. Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining. Cancer Res. 55: 376–85, 1995.PubMedGoogle Scholar
  117. Warren BAShubik P. The growth of the blood supply to melanoma transplants in the hamster cheek pouch chamber. Lab. Invest. 15: 464–478, 1966.PubMedGoogle Scholar
  118. 118.
    Hammersen F, Osterkamp-Baust U, Endrich B. Ein Beitrag zum Feinbau terminaler Strombahnen and ihrer Entstehung in bösartigen Tumoren. Mikrozirk. Forsch. Klin. 2: 15–51, Karger, Basel, 1983.Google Scholar
  119. 119.
    Hammersen F, Endrich B, Messmer K. The fine structure of tumor blood vessels. I. Participation of non-endothelial cells in tumor angiogenesis. Int. J. Microcirc. Clin. Exp. 4:31–43, 1985.PubMedGoogle Scholar
  120. 120.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–966, 1997.PubMedCrossRefGoogle Scholar
  121. 121.
    Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner MJ. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85: 221–228,1999.PubMedCrossRefGoogle Scholar
  122. 122.
    Luttun A, Carmeliet G, Carmeliet P. Vascular progenitors: From biology to treatment. Trends Cardiovasc. Med. 12: 88–96, 2002.PubMedCrossRefGoogle Scholar
  123. 123.
    Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MAS, Hajjar KA, Manova K, Benezra R, Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7: 1194–1201, 2001.PubMedCrossRefGoogle Scholar
  124. 124.
    Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983–985, 1983.PubMedCrossRefGoogle Scholar
  125. 125.
    Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845, 1992.PubMedCrossRefGoogle Scholar
  126. 126.
    Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky DJ, Lyn P, Leavy J, Witte L, Joseph-Silverstein T, Stern DM. Hypoxia mediated induction of acidic/basic fibroblast growth factor and platelet derived growth factor in mononuclear phagocytes stimulates growth ofhypoxic endothelial cells. Proc. Natl. Acad. Sci. USA 92: 46064610, 1995.Google Scholar
  127. 127.
    Folkman J. Clinical applications of research on angiogenesis. N. Engl. J. Med. 333: 1757–1763,1995.PubMedCrossRefGoogle Scholar
  128. 128.
    Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Intern. 56: 794–814, 1999.CrossRefGoogle Scholar
  129. 129.
    Dvorak HF, Nagy JA, Feng D, Brown FL, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 237: 97–132, 1999.PubMedCrossRefGoogle Scholar
  130. 130.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844, 1993.PubMedCrossRefGoogle Scholar
  131. 131.
    Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative FLK-1 mutant. Nature 367: 576–579, 1994.PubMedCrossRefGoogle Scholar
  132. 132.
    Millauer B, Longhi MP, Plate KH, Shawver LK, Risau W, Ullrich A, Strawn LM. Dominant-negative inhibition of FLK-1 suppresses the growth of many tumor types in vivo. Cancer Res. 56: 1615–1620, 1996.PubMedGoogle Scholar
  133. 133.
    Kong HL, Hecht D, Song W, Kovesdi I, Hackett NR, Yayon A, Crystal, RG. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular matrix domain of flt-1 vascular endothelial growth factor receptor. Hum. Gene Ther. 9: 823–833, 1998.PubMedCrossRefGoogle Scholar
  134. 134.
    Goldman CK, Kendall RL, Cabrera G, Soroceanu L, Heike Y, Gillespie GY, Siegal GP, Mao X, Bett AJ, Huckle WR, Thomas KA, Curiel DT. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis and mortality rate. Proc. Natl. Acad. Sci. USA 95: 8795–8800, 1998.PubMedCrossRefGoogle Scholar
  135. 135.
    Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD, Channon KM, Hale LP, Dewhirst MW, George SE, Peters KG. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc. Natl. Acad. Sci. USA 95: 8829–8834, 1998.PubMedCrossRefGoogle Scholar
  136. 136.
    Siemeister G, Schirner M, Weindel K, Reusch P, Menrad A, Marmè D, Martiny-Baron G. Two independent mechanisms essential for tumor angiogenesis: Inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway. Cancer Res. 59: 3185–3191, 1999.PubMedGoogle Scholar
  137. 137.
    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science: 284: 1994–1998, 1999.PubMedCrossRefGoogle Scholar
  138. 138.
    Vajkoczy P, Farhadi M, Gaumann A, Heidenreich R, Erber R, Wunder A, Tonn JC, Menger MD, Breier G. Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J. Clin. Invest. 109: 777–785, 2002.PubMedGoogle Scholar
  139. 139.
    Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS. Effect of p53 status on tumor response to antiangiogenic therapy. Science 295:1526–1528, 2002.PubMedCrossRefGoogle Scholar
  140. 140.
    McCarthy MJ, Crowther M, Bell PRF, Brindle, NPJ. The endothelial receptor tyrosine kinase tie-I is upregulated by hypoxia and vascular endothelial growth factor. FEBS Letters 423: 334–338, 1998.PubMedCrossRefGoogle Scholar
  141. 141.
    Korhonen J, Partanen J, Armstrong E, Vaahtokari A, Elenius K, Jaekanen M, Alitalo K. Enhanced expression of the tie receptor tyrosine kinase in endothelial cells during neovascularization. Blood 80: 2548–2555, 1992.PubMedGoogle Scholar
  142. 142.
    Peters KG, De Vries C, Williams LT. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc. Natl. Acad. Sci. 90: 8915–8919, 1993.PubMedCrossRefGoogle Scholar
  143. 143.
    Sundberg C, Kowanetz M, Brown LF, Detmar M, Dvorak HF. Stable expression of angiopoietin-1 and other markers by cultured pericytes: Phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab. Invest. 82: 387–401, 2002.PubMedCrossRefGoogle Scholar
  144. 144.
    Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E. Up-regulation of vascular endothelial growth factor expression induced by myocardial ischemia: implications for coronary angiogenesis. Cardiovasc. Res. 28: 1176–1179, 1994.PubMedCrossRefGoogle Scholar
  145. 145.
    Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101: 40–50, 1998.PubMedCrossRefGoogle Scholar
  146. 146.
    Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am. J. Physiol. 270: H1803–H1811, 1996.PubMedGoogle Scholar
  147. 147.
    Shyu KG, Manor O, Magner M, Yancopoulos GD, Isner JM. Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit ischemic hindlimb. Circulation 10: 2081–2087, 1998.CrossRefGoogle Scholar
  148. 148.
    Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97: 645–650, 1998.PubMedCrossRefGoogle Scholar
  149. 149.
    Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, Isner JM. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97: 1114–1123, 1998.PubMedCrossRefGoogle Scholar
  150. 150.
    Laham RJ, Simons M, Selke F. Gene transfer for angiognensis in coronary artery disease. Annu. Rev. Med. 52: 485–502, 2001.CrossRefGoogle Scholar
  151. 151.
    Boehm T, Folkman F, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390: 404–407, 1997.PubMedCrossRefGoogle Scholar
  152. 152.
    O’Reilly MS, Pirie Shepherd S, Lane WS, Folkman J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 285: 1926–1928, 1999.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Sybill Patan
    • 1
  1. 1.Division of CardiologyAlbert Einstein College of Medicine, Yeshiva UniversityBronxUSA

Personalised recommendations