Organic Acid Production by Filamentous Fungi

  • Jon K. Magnuson
  • Linda L. Lasure

Abstract

Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, S., Furuyu, A., Saito, T., and Takayama, K.I. (1962). Method of producing L-malic acid by fermentation. US Patent 3, 063, 910. Google Scholar
  2. Aida, K. and Foster, J.W. (1962). Incorporation of molecular oxygen into trans-L-epoxysuccinic acid by Aspergillus fumigatus. Nature 196, 672.PubMedGoogle Scholar
  3. Albright, F. and Schroepfer, G.J. Jr. (1971). l-trans-2,3-Epoxy succinic acid a new substrate for fumarase. J. Biol. Chem. 246, 1350–1357.PubMedGoogle Scholar
  4. Alvarez-Vasquez, F., González-Alcón, C., and Torres, N.V. (2000). Metabolism of citric acid production by Aspergillus niger: Model definition, steady-state analysis and constrained optimization of citric acid production rate. Biotechnol. Bioeng. 70, 82–108.Google Scholar
  5. Arisan-Atac, I., Wolschek, M.F., and Kubicek, C.P. (1996). Trehalose-6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol. Lett. 140, 77–83.PubMedGoogle Scholar
  6. Arts, E., Kubicek, C.P., and Röhr, M. (1987). Regulation of phosphofructokinase from Aspergillus niger. Effect of fructose 2,6-bisphosphate on the action of citrate, ammonium ions and AMR J. Gen. Microbiol. 133, 1195–1200.Google Scholar
  7. Baniel, A.M., Blumberg, R., and Hajdu, K. (1981). Recovery of acids from aqueous solutions. US Patent, 4,275,234. Google Scholar
  8. Battat, E., Peleg, Y., Bercovitz, A., Rokem, J.S., and Goldberg, I. (1991). Optimization of L-malic acid production by Aspergillus flavus in a stirred fermenter. Biotechnol. Bioeng. 37, 1108–1116.Google Scholar
  9. Batti, M. and Schweiger, L.B. (1963). Process for the production of itaconic Acid. US Patent 3, 078, 217. Google Scholar
  10. Bencina, M., Panneman, H., Ruijter, G.J.G., Legisa, M., and Visser, J. (1997). Characterization and overexpression of the Aspergillus niger gene encoding the cAMP-dependent protein kinase catalytic subunit. Microbiology 143, 1211–1220.PubMedGoogle Scholar
  11. Bentley, R. and Thiessen, C.P. (1957a). Biosynthesis of itaconic acid in Aspergillus terreus. I. Tracer studies with 14C-labeled substrates. J. Biol. Chem. 226, 673–687.PubMedGoogle Scholar
  12. Bentley, R. and Thiessen, C.P. (1957b). Biosynthesis of itaconic acid in Aspergillus terreus. II. Early stages in glucose dissimilation and the role of citrate. J. Biol. Chem. 226, 689–701.PubMedGoogle Scholar
  13. Bentley, R. and Thiessen, C.P. (1957c). Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J. Biol. Chem. 226, 703–720.PubMedGoogle Scholar
  14. Bentley, R. and Thiessen, C.P. (1955). cis-Aconitic decarboxylase. Science 122, 330.PubMedGoogle Scholar
  15. Bercovitz, A., Peleg, Y., Battat, E., Rokem, J.S., and Goldberg, I. (1990). Localization of pyruvate carboxylase in organic acid producing Aspergillus strains. Appl. Environ. Microbiol. 56, 1594–1597.PubMedGoogle Scholar
  16. Birkinshaw, J.H., Bracken, A., and Raistrick, H. (1945). Metabolic products of Aspergillus fumigatus Fresenius. Biochem. J. 39, 70–72.PubMedGoogle Scholar
  17. Blom, R.H., Pfeifer, V.F., Moyer, A.J., Traufler, D.H., Conway, H.F., Crocker, C.K., Farison, R.E., and Hannibal, D.V. (1952). Sodium gluconate production: Fermentation with Aspergillus niger. Ind. Eng. Chem. 44, 435–440.Google Scholar
  18. Bloom, S.J. and Johnson, M.J. (1962). The pyruvate carboxylase of Aspergillus niger. J. Biol. Chem. 237, 2718–2720.PubMedGoogle Scholar
  19. Boddy, L.M., Berges, T., Barreau, C., Vainstein, M.H., Dobson, M.J., Balance, D.J., and Peberdy, J.F. (1993). Purification and characterization of an Aspergillus niger invertase and its DNA sequence. Curr. Genet. 24, 60–66.PubMedGoogle Scholar
  20. Boles, E. and Hollenberg, C.P. (1997). The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 21, 85–111.PubMedGoogle Scholar
  21. Bomstein, R.A. and Johnson, M.J. (1952). The mechanism of formation of citrate and oxalate by Aspergillus niger. J. Biol. Chem. 198, 143–153.PubMedGoogle Scholar
  22. Bonnarme, P., Gillet, B., Sepulchre, A.M., Role, C., Beloeil, J.C., and Ducrocq, C. (1995). Itaconate biosynthesis in Aspergillus terreus. J. Bacteriol. 177, 3573–3578.PubMedGoogle Scholar
  23. Calam, C.T., Oxford, A.E., and Raistrick, H. (1939). CLXXXIII. Studies in the biochemistry of micro-organisms. LXni. Itaconic acid, a metabolic product of a strain of Aspergillus terreus Thorn. Biochem. J. 33, 1488–1495.PubMedGoogle Scholar
  24. Cleland, W.W., and Johnson, M.J. (1954). Tracer experiments on the mechanism of citric acid formation by Aspergillus niger. J. Biol. Chem. 208, 679–689.PubMedGoogle Scholar
  25. Cornish-Bowden, A., Hofmeyr, J.-H.S., and Cardenas, M.L. (1995). Strategies for manipulating metabolic fluxes in biotechnology. Bioorg. Chem. 23, 439–449.Google Scholar
  26. Coulthard, C.E., Michaelis, R., Short, W.F., Sykes, G., Skrimshire, G.E.H., Standfast, A.F.B., Birkinshaw, J.H., and Raistrick, H. (1945). Notatin: An anti-bacterial glucose-aerodehydrogenase from Penicillium notatum Westling and Penicillium resticulosum sp. nov. Biochem. J. 39, 24–36.PubMedGoogle Scholar
  27. Currie, J.N. (1917). Citric acid fermentation. J. Biol. Chem. 31, 15–37.Google Scholar
  28. DOE Joint Genome Institute (2002). JGI Programs: White Rot Genome Project.; http://www.jgi.doe.gov/programs/whiterot.htm.
  29. Dong, X.Y., Bai, S., and Sun, Y. (1996). Production of L(+)-lactic acid with Rhizopus oryzae immobilized in polyurethane foam cubes. Biotechnol. Lett. 18, 225–228.Google Scholar
  30. Du, J.X., Cao, N.J., Gong, C.S., and Tsao, G.T. (1998). Production of L-lactic acid by Rhizopus oryzae in a bubble column fermenter. Appl. Biochem. Biotechnol. 70, 323–329.PubMedGoogle Scholar
  31. Dutton, M.V. and Evans, C.S. (1996). Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 42, 881–895.Google Scholar
  32. Ehrlich, F. (1911). Formation of fumaric acid by means of molds. Ber. Dtsch. Chem. Ges. 44, 3737–3742.Google Scholar
  33. Eimhjellen, K.E. and Larsen, H. (1955). The mechanism of itaconic acid formation by Aspergillus terreus. 2. The effect of substrates and inhibitors. Biochem. J. 60, 139–147.PubMedGoogle Scholar
  34. Foster, J.W. (1949). Chemical activities of fungi. Academic Press, New York.Google Scholar
  35. Foster, J.W. and Waksman, S.A. (1939). The production of fumaric acid by molds belonging to the genus Rhizopus. J. Am. Chem. Soc. 61, 127–135.Google Scholar
  36. Frederick, K.R., Tung, J., Emerick, R.S., Masiarz, F.R., Chamberlain, S.H., Vasavada, A., Rosenberg, S., Chakraborty, S. et al., (1990). Glucose oxidase from Aspergillus niger—cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme. J. Biol. Chem. 265, 3793–3802.PubMedGoogle Scholar
  37. Friedberg, D., Peleg, Y., Monsonego, A., Maissi, S., Battat, E., Rokem, J.S., and Goldberg, I. (1995). The fumR gene encoding fumarase in the filamentous fungus Rhizopus oryzae—cloning, structure and expression. Gene 163, 139–144.PubMedGoogle Scholar
  38. Gallmetzer, M., Meraner, J., and Burgstaller, W. (2002). Succinate synthesis and excretion by Penicillium simplicissimum under aerobic and anaerobic conditions. FEMS Microbiol. Lett. 210, 221–225.PubMedGoogle Scholar
  39. Gibbs, M. and Gastel, R. (1953). Glucose dissimilation by Rhizopus. Arch. Biochem. Biophys. 43, 33–38.PubMedGoogle Scholar
  40. Gibson, Q.H., Swoboda, B.E.P., and Massey, V. (1964). Kinetics and mechanism of action of glucose oxidase. J. Biol. Chem. 239, 3927–3934.PubMedGoogle Scholar
  41. Gleason, F.H., Nolan, R.A., Wilson, A.C., and Emerson, R. (1966). D(-)-Lactate dehydrogenase in lower fungi. Science 152, 1272–1273.PubMedGoogle Scholar
  42. Gradisnik-Grapulin, M. and Legisa, M. (1997). A spontaneous change in the intracellular cyclic AMP level in Aspergillus niger is influenced by the sucrose concentration in the medium and by light. Appl. Environ. Microbiol 63, 2844–284PubMedGoogle Scholar
  43. Guebel, D.V. and Torres Danas, N.V. (2001). Optimization of the citric acid production by Aspergillus niger through a metabolic flux balance model. Electron. J. Biotechnol. 4, 1–14.Google Scholar
  44. Guevarra, E.D. and Tabuchi, T. (1990). Accumulation of itaconic, 2-hydroxyparaconic, itatartaric, and malicacids by strains of the genus Ustilago. Agric. Biol. Chem. 54, 2353–2358.Google Scholar
  45. Gyamerah, M. (1995a). Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Appl. Microbiol. Biotechnol. 44, 356–361.Google Scholar
  46. Gyamerah, M.H. (1995b). Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl. Microbiol. Biotechnol. 44, 20–26.Google Scholar
  47. Habison, A., Kubicek, C.P., and Röhr, M. (1983). Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem. J. 209, 669–676.PubMedGoogle Scholar
  48. Hamamci, H. and Ryu, D.D.Y. (1994). Production of L(+)-lactic acid using immobilized Rhizopus oryzae— Reactor performance based on kinetic model and simulation. Appl. Biochem. Biotechnol. 44, 125–133.Google Scholar
  49. Hang, YD., Hamamci, H., and Woodams, E.E. (1989). Production of L(+)-lactic acid by Rhizopus oryzae immobilized in calcium alginate gels. Biotechnol. Lett. 11, 119–120.Google Scholar
  50. Haskins, R.H., Thorn, J.A., and Boothroyd, B. (1955). Biochemistry of the Ustilaginales. XI. Metabolic products of Ustilago zeae in submerged culture. Can. J. Microbiol. 1, 749–756.PubMedGoogle Scholar
  51. Hayaishi, O., Shimazono, H., Katagiri, M., and Saito, Y. (1956). Enzymatic formation of oxalate and acetate from oxaloacetate. J. Am. Chem. Soc. 78, 5126–5127.Google Scholar
  52. Heiland, S., Radovanovic, N., Höfer, M., Winderickx, J., and Lichtenberg, H. (2000). Multiple hexose transporters of Schizosaccharomyces pombe. J. Bacteriol. 182, 2153–2162.PubMedGoogle Scholar
  53. Hesse, S.J.A., Ruijter, G.J.G., Dijkema, C., and Visser, J. (2000). Measurement of intracellular (compartmental) pH by 31P NMR in Aspergillus niger. J. Biotechnol. 77, 5–15.PubMedGoogle Scholar
  54. Hesse, S.J.A., Ruijter, G.J.G., Dijkema, C.O.R., and Visser, J. (2002). Intracellular pH homeostasis in the filamentous fungus Aspergillus niger. Eur. J. Biochem. 269, 3485–3494.PubMedGoogle Scholar
  55. Jaklitsch, W.M., Kubicek, C.P, and Scrutton, M.C. (1991). Intracellular location of enzymes involved in citrate production by Aspergillus niger. Can. J. Microbiol. 37, 823–827.PubMedGoogle Scholar
  56. Jermyn, M.A. (1960). Studies on the glucono-delta-lactonase of Pseudomonas fluorescens. Biochim. Biophys. Acta 37, 78–92.PubMedGoogle Scholar
  57. Joseph-Horne, T.I.M., Hollomon, D.W., and Wood, P.M. (2001). Fungal respiration: A fusion of standard and alternative components. Biochim. Biophys. Acta 1504, 179–195.PubMedGoogle Scholar
  58. Kane, J., Finlay, A., and Amann, P. (1945). Production of itaconic acid. US Patent 2, 385,283.Google Scholar
  59. Kautola, H., Vahvaselka, M., Linko, YY., and Linko, P. (1985). Itaconic acid production by immobilized Aspergillus terreus from xylose and glucose. Biotechnol. Lett. 7, 167–172.Google Scholar
  60. Kelley, R.L. and Reddy, C.A. (1986). Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J. Bacteriol. 166, 269–274.PubMedGoogle Scholar
  61. Kelley, R.L. and Reddy, C.A. (1988). Glucose oxidase of Phanerochaete chrysosporium. Meth. Enzymol. 161, 307–316.PubMedGoogle Scholar
  62. Kenealy, W., Zaady, E., du Preez, J.C., Stieglitz, B., and Goldberg, I. (1986). Biochemical aspects of fumaric acid accumulation by Rhizopus arrhizus. Appl. Environ. Microbiol. 52, 128–133.PubMedGoogle Scholar
  63. Kilian, S.G., van Deemter, A., Kock, J.L.F., and du Preez, J.C. (1991). Occurrence and taxonomic aspects of proton movements coupled to sugar transport in the yeast genus Kluyveromyces. Antonie Van Leeuwenhoek 59, 199–206.PubMedGoogle Scholar
  64. Kinoshita, K. (1931). Production of itaconic acid and mannitol by a new mold, Aspergillus itaconicus. Acta Phytochim. 5, 271–287.Google Scholar
  65. Kirimura, K., Hirowatari, Y., and Usami, S. (1987). Alterations of respiratory systems in Aspergillus niger under the conditions of citric acid fermentation. Agric. Biol. Chem. 51, 1299–1304.Google Scholar
  66. Kirimura, K., Yoda, M., Ko, I., Oshida, Y., Miyake, K., and Usami, S. (1999a). Cloning and sequencing of the chromosomal DNA and cDNA encoding the mitochondrial citrate synthase of Aspergillus niger WU-2223L. J. Biosci. Bioeng. 88, 237–243.PubMedGoogle Scholar
  67. Kirimura, K., Yoda, M., Kumatani, M., Ishii, Y., Kino, K., and Usami, S. (2002). Cloning and expression of Aspergillus niger icdA gene encoding mitochondrial NADP+-specific isocitrate dehydrogenase. J. Biosci. Bioeng. 93, 136–144.PubMedGoogle Scholar
  68. Kirimura, K., Yoda, M., Shimizu, H., Sugano, S., Mizuno, M., Kino, K., and Usami, S. (2000). Contribution of cyanide-insensitive respiratory pathway, catalyzed by the alternative oxidase, to citric acid production in Aspergillus niger. Biosci. Biotechnol. Biochem. 64, 2034–2039.PubMedGoogle Scholar
  69. Kirimura, K., Yoda, M., and Usami, S. (1999b). Cloning and expression of the cDNA encoding an alternative oxidase gene from Aspergillus niger WU-2223L. Curr. Genet. 34, 472–477.PubMedGoogle Scholar
  70. Kleppe, K. (1966). The effect of hydrogen peroxide on glucose oxidase from Aspergillus niger. Biochemistry 5, 139–143.PubMedGoogle Scholar
  71. Kosakai, Y., Park, Y.S., and Okabe, M. (1997). Enhancement of L(+)-lactic acid production using mycelial flocs of Rhizopus oryzae. Biotechnol. Bioeng. 55, 461–470.PubMedGoogle Scholar
  72. Kubicek, C.P., Hampel, W., and Röhr, M. (1979). Manganese deficiency leads to elevated amino-acid pools in citric acid accumulating Aspergillus niger. Arch. Microbiol. 123, 73–80.PubMedGoogle Scholar
  73. Kubicek, C.P. and Röhr, M. (1980). Regulation of citrate synthase from the citric acid accumulating fungus, Aspergillus niger. Biochim. Biophys. Acta 615, 449–457.PubMedGoogle Scholar
  74. Kubicek, C.P. and Röhr, M. (1985). Aconitase and citric acid fermentation by Aspergillus niger. Appl. Environ. Microbiol. 50, 1336–1338.PubMedGoogle Scholar
  75. Kubicek, C.P. and Röhr, M. (1986). Citric acid fermentation. Crit. Rev. Biotechnol. 3, 331–374.Google Scholar
  76. Kubicek, C.P., Schreferl-Kunar, G., Wöhrer, W., and Röhr, M. (1988). Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger. Appl. Environ. Microbiol. 54, 633–637.PubMedGoogle Scholar
  77. Kubicek, C.P., Zehentgruber, O., El-Kalak, H., and Röhr, M. (1980). Regulation of citric acid production by oxygen: Effect of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger. Eur. J. Appl. Microbiol. Biotechnol. 9, 101–115.Google Scholar
  78. Kusai, K., Sekuzu, I., Hagihara, B., Okunuki, K., Yamauchi, S., and Nakai, M. (1960). Crystallization of glucose oxidase from Penicillium amagasakiense. Biochim. Biophys. Acta 40, 555–557.PubMedGoogle Scholar
  79. La Nauze, J.M. (1966). Aconitase and isocitric dehydrogenases of Aspergillus niger in relation to citric acid production. J. Gen. Microbiol. 44, 73–81.PubMedGoogle Scholar
  80. Lantero, O.J. and Shetty, J.K. (2001). Process for the preparation of gluconic acid and gluconic acid produced thereby. US Patent 20020119583. Google Scholar
  81. Larsen, H. and Eimhjellen, K.E. (1955). The mechanism of itaconic acid formation by Aspergillus terreus. 1. The effect of acidity. Biochem. J. 60, 135–139.PubMedGoogle Scholar
  82. Legisa, M. and Bencina, M. (1994). Evidence for the activation of 6-phosphofructo-1-kinase by cAMP-dependent protein kinase in Aspergillus niger. FEMS Microbiol. Lett. 118, 327–333.PubMedGoogle Scholar
  83. Legisa, M. and Grdadolnik, S.G. (2002). Influence of dissolved oxygen concentration on intracellular pH and consequently on growth rate of Aspergillus niger. Food Technol. Biotechnol. 40, 27–Google Scholar
  84. Legisa, M. and Kidric, J. (1989). Initiation of citric acid accumulation in the early stages of Aspergillus niger growth. Appl. Microbiol. Biotechnol. 31, 453–457.Google Scholar
  85. LéJohn, H.B. (1971). D(-)-Lactate dehydrogenases in fungi: Kinetics and allosteric inhibition by guanosine triphosphate. J. Biol. Chem. 246, 2116–2126.PubMedGoogle Scholar
  86. Lenz, H., Wunderwald, P., and Eggerer, H. (1976). Partial purification and some properties of oxalacetase from Aspergillus niger. Euro. J. Biochem. 65, 225–236.Google Scholar
  87. Lewis, K.F. and Weinhouse, S. (1951). Studies on the mechanism of citric acid production in Aspergillus niger. J. Am. Chem. Soc. 73, 2500–25Google Scholar
  88. Ling, E.T.M., Dibble, J.T., Houston, M.R., Lockwood, L.B., and Elliott, L.P. (1978). Accumulation of l-trans-2,3-epoxysuccinic acid and succinic acid by Paecilomyces variota. Appl. Environ. Microbiol. 35, 1213–1215.PubMedGoogle Scholar
  89. Litchfield, J.H. (1996). Microbiological production of lactic acid Academic Press, New York, (pp. 45–95).Google Scholar
  90. Lockwood, L.B. and Reeves, M.D. (1945). Some factors affecting the production of itaconic acid by Aspergillus terreus. Arch. Biochem. 6, 455–469.Google Scholar
  91. Lockwood, L.B., Ward, G.E., and May, O.E. (1936). The physiology of Rhizopus oryzae. J. Agric. Res. 53, 849–857.Google Scholar
  92. Longacre, A., Reimers, J.M., Gannon, J.E., and Wright, B.E. (1997). Flux analysis of glucose metabolism in Rhizopus oryzae for the purpose of increasing lactate yields. Fungal Genet. Biol. 21, 30–39.PubMedGoogle Scholar
  93. Lopez-Garcia, R. (2002). Citric acid. In Kirk-Othmer (ed) Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, Inc., New York, USA.Google Scholar
  94. Ma, H., Kubicek, C.P, and Röhr, M. (1985). Metabolic effects of manganese deficiency in Aspergillus niger. Evidence for increased protein degradation. Arch. Microbiol. 141, 266–268.PubMedGoogle Scholar
  95. Margulies, M. and Vishniac, W. (1961). Dissimilation of glucose by the MX strain of Rhizopus. J. Bacteriol. 81, 1–9.PubMedGoogle Scholar
  96. Mark, C.G. and Romano, A.H. (1971). Properties of the hexose transport systems of Aspergillus nidulans. Biochim. Biophys. Acta 249, 216–226.PubMedGoogle Scholar
  97. Martin, S.M., Wilson, P.W, and Burris, R.H. (1950). Citric acid formation from 14CO2 by Aspergillus niger. Arch. Biochem. 26, 103–111.Google Scholar
  98. Martin, W.R., and Foster, J.W. (1955). Production of trans-L-epoxysuccinic acid by fungi and its microbiological conversion to meso-tartaric acid. J. Bacteriol. 70, 405–414.PubMedGoogle Scholar
  99. Mattey, M. (1992). The production of organic acids. Crit. Rev. Biotechnol. 12, 87–132.PubMedGoogle Scholar
  100. McQuigg, D.W., Marston, C., Fitzpatrick, G., Crowe, E., and Vorhies, S. (2000). Processes for recovering citric acid. US Patent 6,137,004. Google Scholar
  101. Meixner-Monori, B., Kubicek, C.P., Harrer, W., Schreferl, G., and Röhr, M. (1986). NADP-specific isocitrate dehydrogenase from the citric acid accumulating fungus Aspergillus niger. Biochem. J. 236, 549–558.PubMedGoogle Scholar
  102. Meixner-Monori, B., Kubicek, C.P., and Röhr, M. (1984). Pyruvate kinase from Aspergillus niger a regulatory enzyme in glycolysis. Can. J. Microbiol. 30, 16–22.PubMedGoogle Scholar
  103. Moyer, A.J., Umberger, E.J., and Stubbs, J.J. (1940). Fermentation of concentrated solutions of glucose to gluconic acid: Improved process. Ind. Eng. Chem. 32, 1379–1383.Google Scholar
  104. Mueller, H.-M. (1975). Oxalate accumulation from citrate by Aspergillus niger. I. Biosynthesis of oxalate from its ultimate precursor. Arch. Microbiol. 103, 185–190.Google Scholar
  105. Nelson, G.E.N., Traufler, D.H., Kelley, S.E., and Lockwood, L.B. (1952). Production of itaconic acid by Aspergillus terreus in 20-liter fermentors. Ind. Eng. Chem. 44, 1166–1168.Google Scholar
  106. Netik, A., Torres, N.V., Riol, J.-M., and Kubicek, C.P. (1997). Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim. Biophy. Acta 1326, 287–294.Google Scholar
  107. Nubel, R.C. and Ratajak, E.J. (1962). Process for producing itaconic acid. US Patent 3, 044, 941. Google Scholar
  108. O’Malley, J.J. and Weaver, J.L. (1972). Subunit structure of glucose oxidase from Aspergillus niger. Biochemistry 11, 3527–3532.PubMedGoogle Scholar
  109. Ogawa, K., Nakajima-Kambe, T., Nakahara, T., and Kokufuta, E. (2002). Coimmobilization of gluconolactonase with glucose oxidase for improvement in kinetic property of enzymatically induced volume collapse in ionic gels. Biomacromolecules 3, 625–631.PubMedGoogle Scholar
  110. Osmani, S. and Scrutton, M.C. (1983). The sub cellular localization of pyruvate carboxylase and of some other enzymes in Aspergillus nidulans. Eur. J. Biochem. 133, 551–560.PubMedGoogle Scholar
  111. Osmani, S. and Scrutton, M.C. (1985). The subcellular localization and regulatory properties of pyruvate carboxylase from Rhizopus arrhizus. Eur. J. Biochem. 147, 119–128.PubMedGoogle Scholar
  112. Overman, S.A. and Romano, A.H. (1969). Role of pyruvate carboxylase in fumaric acid accumulation by Rhizopus nigricans. Bacteriol. Proc. 69, 128.Google Scholar
  113. Panneman, H., Ruijter, G.J.G., van den Broeck, H.C., Driever, E.T.M., and Visser, J. (1996). Cloning and biochemical characterisation of an Aspergillus niger glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes. Eur. J. Biochem. 240, 518–525.PubMedGoogle Scholar
  114. Panneman, H., Ruijter, G.J.G., van den Broeck, H.C., and Visser, J. (1998). Cloning and biochemical characterisation of Aspergillus niger hexokinase. The enzyme is strongly inhibited by physiological concentrations of trehalose-6-phosphate. Eur. J. Biochem. 258, 223–232.PubMedGoogle Scholar
  115. Park, E.Y., Kosakai, Y., and Okabe, M. (1998). Efficient production of L-(+)-lactic acid using mycelial cottonlike flocs of Rhizopus oryzae in an air-lift bioreactor. Biotechnol. Prog. 14, 699–704.PubMedGoogle Scholar
  116. Pazur, J.H. (1966). Glucose oxidase from Aspergillus niger. Methods Enzymol. 9, 82–87.Google Scholar
  117. Pedersen, H., Christensen, B., Hjort, C., and Nielsen, J. (2000a). Construction and characterization of an oxalic acid nonproducing strain of Aspergillus niger. Metab. Eng. 2, 34–41.PubMedGoogle Scholar
  118. Pedersen, H., Hjort, C., and Nielsen, J. (2000b). Cloning and characterization of oah, the gene encoding oxaloacetate hydrolase in Aspergillus niger. Mol. Gen. Genet. 263, 281–286.PubMedGoogle Scholar
  119. Peksel, A., Torres, N.V., Liu, J., Juneau, G., and Kubicek, C.P. (2002). 13C-NMR Analysis of glucose metabolism during citric acid production by Aspergillus niger. Appl. Microbiol. Biotechnol. 58, 157–163.PubMedGoogle Scholar
  120. Peleg, Y., Barak, A., Scrutton, M.C., and Goldberg, I. (1989a). Malic acid accumulation by Aspergillus flavus. 3. 13C-NMR and isoenzyme analyses. Appl. Microbiol. Biotechnol. 30, 176–183.Google Scholar
  121. Peleg, Y., Battat, E., Scrutton, M.C., and Goldberg, I. (1989b). Isoenzyme pattern and subcellular localization of enzymes involved in fumaric acid accumulation by Rhizopus oryzae. Appl. Microbiol. Biotechnol. 32, 334–339.Google Scholar
  122. Peleg, Y., Stieglitz, B., and Goldberg, I. (1988). Malic acid accumulation by Aspergillus flavus. 1. Biochemical aspects of acid biosynthesis. Appl. Microbiol. Biotechnol. 28, 69–75.Google Scholar
  123. Pfeifer, VF., Vojnovich, C., and Heger, E.N. (1952). Itaconic acid by fermentation with Aspergillus terreus. Ind. Eng. Chem. 44, 2975–2980.Google Scholar
  124. Porro, D., Bianchi, M., Ranzi, B.M., Frontali, L., Vai, M., Winkler, A.A., and Alberghina, L. (2002). Yeast strains for the production of lactic acid transformed with a gene coding for lactic acid dehydrogenase. US Patent 6, 429, 006. Google Scholar
  125. Pritchard, G.G. (1973). Factors affecting the activity and synthesis of NAD-dependent lactate dehydrogenase in Rhizopus oryzae. J. Gen. Microbiol. 78, 125–137.Google Scholar
  126. Pritchard, G.G. (1971). An NAD-independent L-lactate dehydrogenase from Rhizopus oryzae. Biochim. Biophys. Acta 250, 25–34.PubMedGoogle Scholar
  127. Prömper, C., Schneider, R., and Weiss, H. (1993). The role of the proton-pumping and alternative respiratory chain NADH: Ubiquinone oxidoreductases in overflow catabolism of Aspergillus niger. Eur. J. Biochem. 216, 223–230.PubMedGoogle Scholar
  128. Rhodes, R.A., Moyer, A.J., Smith, M.L., and Kelley, S.E. (1959). Production of fumaric acid by Rhizopus arrhizus. Appl. Microbiol. 7, 74–PubMedGoogle Scholar
  129. Röhr, M., Kubicek, C.P., Zehentgruber, O., and Orthofer, R. (1987). Accumulation and partial reconsumption of polyols during citric acid fermentation by Aspergillus niger. Appl. Microbiol. Biotechnol. 27, 235–239.Google Scholar
  130. Ruijter, G.J.G., Kubicek, C.P., and Visser, J. (2002). Production of organic acids by fungi. In H. D. Osiewacz (ed) The mycota: A comprehensive treatise on fungi as experimental systems for basic and applied research. Industrial Applications Springer-Verlag, Berlin, Germany, pp. 213–23Google Scholar
  131. Ruijter, G.J.G, Panneman, H., and Visser, J. (1998). Metabolic engineering of the glycolytic pathway in Aspergillus niger. Food Technol. Biotechnol. 36, 185–188.Google Scholar
  132. Ruijter, G.J.G., Panneman, H., and Visser, J. (1997). Overexpression of phosphofructokinase and pyruvate kinase in citric acid-producing Aspergillus niger. Biochim. Biophys. Acta 1334, 317–326.PubMedGoogle Scholar
  133. Ruijter, G.J.G., Panneman, H., Xu, D.-B., and Visser, J. (2000). Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol. Lett. 184, 35–40.PubMedGoogle Scholar
  134. Ruijter, G.J.G., van de Vondervoort, P.J.I., and Visser, J. (1999). Oxalic acid production by Aspergillus niger: An oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 145, 2569–2576.PubMedGoogle Scholar
  135. Ruijter, G.J.G. and Visser, J. (1999). Characterization of Aspergillus niger phosphoglucose isomerase. use for quantitative determination of erythrose-4-phosphate. Biochimie 81, 267–272.PubMedGoogle Scholar
  136. Sakaguchi, K., Inoue, T., and Tada, S. (1939). On the production of aethyleneoxide-alpha-beta-dicarboxylic acid by moulds. Zentr. Bakteriol. Parasitenk. Abt. II 100, 302–307.Google Scholar
  137. Schreferl, G., Kubicek, C.P., and Röhr, M. (1986). Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase. J. Bacteriol. 165, 1019–1022.PubMedGoogle Scholar
  138. Shimi, I.R. and Nour El Dein, M.S. (1962). Biosynthesis of itaconic acid by Aspergillus terreus. Archive fur Mikrobiologie 44, 181–188.Google Scholar
  139. Shu, P. and Johnson, M.J. (1947). Effect of the composition of the sporulation medium on citric acid production by Aspergillus niger in submerged culture. J. Bacteriol. 54, 161–167.PubMedGoogle Scholar
  140. Shu, P. and Johnson, M.J. (1948a). Citric acid production by submerged fermentation with Aspergillus niger. Ind. Eng. Chem. 40, 1202–1205.Google Scholar
  141. Shu, P. and Johnson, M.J. (1948b). The interdependence of medium constituents in citric acid production by submerged fermentation. J. Bacteriol. 56, 577–585.PubMedGoogle Scholar
  142. Skory, C.D. (2001). Fungal lactate dehydrogenase gene and constructs for the expression thereof. US Patent 6, 268,189. Google Scholar
  143. Skory, C.D. (2000). Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae. Appl Environ. Microbiol. 66, 2343–2348.PubMedGoogle Scholar
  144. Skory, CD., Freer, S.N., and Bothast, R.J. (1998). Production of L-lactic acid by Rhizopus oryzae under oxygen limiting conditions. Biotechnol. Lett. 20, 191–194.Google Scholar
  145. Snell, R.L. and Lowery, CE. (1964). Calcium L (+) lactate and L (+) lactic acid production. US Patent 3,125,494. Google Scholar
  146. Swart, K., van de Vondervoort, P.J.I., Witteveen, C.F.B., and Visser, J. (1990). Genetic localization of a series of genes affecting glucose oxidase levels in Aspergillus niger. Curr. Genet. 18, 435–440.PubMedGoogle Scholar
  147. Swoboda, B.E.P., and Massey, V. (1965). Purification and properties of the glucose oxidase from Aspergillus niger. J. Biol. Chem. 240, 2209–2215.PubMedGoogle Scholar
  148. Tabuchi, T. (1991). Manufacture of itaconic acid with Ustilago. Japan Patent 3,035,785. Google Scholar
  149. Tamada, M., Begum, A.A., and Sadi, S. (1992). Production of L(+)-lactic acid by immobilized cells of Rhizopus oryzae with polymer supports prepared by gamma-ray induced polymerization. J. Ferment. Bioeng. 74, 379–383.Google Scholar
  150. TIGR (2002). The Aspergillus fumigatus genome database; http://www.tigr.org/tdb/e2k1/afu1/.
  151. Title 21CFR173.280. (1984). Food and Drugs; Part 173-Secondary direct food additives permitted in food for human consumption; Subpart C—Solvents, lubricants, release agents and related substances; 173.280-solvent extraction process for citric acid.Google Scholar
  152. Title 21CFR184.1318. (1986). Food and Drugs; Part 184-Direct food substances affirmed as generally recognized as safe; Subpart B—Listing of specific substances affirmed as Gras; 184.1318-glucono delta lactone.Google Scholar
  153. Title 21CFR184.1033. (1994). Food and Drugs; Part 184-Direct food substances affirmed as generally recognized as safe; Subpart B-Listing of specific substances affirmed as Gras; 184.1033-citric acid.Google Scholar
  154. Todd, R.B., Andrianopoulos, A., Davis, M.A., and Hynes, M.J. (1998). FacB, the Aspergillus nidulans activator of acetate utilization genes, binds dissimilar DNA sequences. EMBO J. 17, 2042–2054.PubMedGoogle Scholar
  155. Torres, N.V. (1994). Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: I. Model definition and stability of the steady state. Biotechnol. Bioeng. 44, 104–111.PubMedGoogle Scholar
  156. Torres, N.V., Riol-Cimas, J.M., Wolschek, M., and Kubicek, C.P. (1996a). Glucose transport by Aspergillus niger: The low-affinity carrier is only formed during growth on high glucose concentrations. Appl. Microbiol. Biotechnol. 44, 790–794.Google Scholar
  157. Torres, N.V., Voit, E.O., and González-Alcón, C. (1996b). Optimization of nonlinear biotechnological process with linear programming: Application to citric acid production by Aspergillus niger. Biotechnol. Bioeng. 49, 247–258.PubMedGoogle Scholar
  158. Vainstein, M.H. and Peberdy, J.F. (1991). Regulation of invertase in Aspergillus nidulans: Effect of different carbon sources. J. Gen. Microbiol. 137, 315–322.PubMedGoogle Scholar
  159. Vroemen, A.J. and Beverini, M. (1999). Enzymatic production of gluconic acid or its salts. US Patent 5,897,995. Google Scholar
  160. Waksman, S.A. and Foster, J.W. (1938). Respiration and lactic acid production by a fungus of the genus Rhizopus. J. Agric. Res. 57, 873–899.Google Scholar
  161. Wallis, G.L.F., Hemming, F.W., and Peberdy, J.F. (1997). Secretion of two beta-fructofuranosidases by Aspergillus niger growing in sucrose. Arch. Biochem. Biophy. 345, 214–222.Google Scholar
  162. Wang, H.S. and LéJohn, H.B. (1974). Analogy and homology of the dehydrogenases of oomycetes. Part 2. Regulation by GTP of D-levo-lactic dehydrogenases and isozyme patterns. Can. J. Microbiol. 20, 575–580.PubMedGoogle Scholar
  163. Ward, G.E., Lockwood, L.B., and May, O.E. (1938). Fermentation process for the manufacture of dextro-lactic acid. US Patent 2,132,712. Google Scholar
  164. Wariishi, H., Valli, K., and Gold, M.H. (1992). Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: Kinetic mechanism and role of chelators. J. Biol. Chem. 267, 23688–23695.PubMedGoogle Scholar
  165. Wayman, F.M. and Mattey, M. (2000). Simple diffusion is the primary mechanism for glucose uptake during the production phase of the Aspergillus niger citric acid process. Biotechnol. Bioeng. 67, 451–456.PubMedGoogle Scholar
  166. Wilkoff, L.J. and Martin, W.R. (1963). Studies on the biosynthesis of trans-l-epoxysuccinic acid by Aspergillus fumigatus. J. Biol. Chem. 238, 843–846.PubMedGoogle Scholar
  167. Willke, T. and Vorlop, K.D. (2001). Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 56, 289–295.PubMedGoogle Scholar
  168. Winskill, N. (1983). Tricarboxylic-acid cycle activity in relation to itaconic acid biosynthesis by Aspergillus terreus. J. Gen. Microbiol. 129, 2877–2883.Google Scholar
  169. Witteveen, C.F.B., van de Vondervoort, P., Swart, K., and Visser, J. (1990). Glucose oxidase overproducing and negative mutants of Aspergillus niger. Appl. Microbiol. Biotechnol. 33, 683–686.Google Scholar
  170. Witteveen, C.F.B., van de Vondervoort, P.J.I., van den Broeck, H.C., van Engelenburg, F.A.C., de Graaff, L.H., Hillebrand, M.H.B.C., Schaap, P.J., and Visser, J. (1993). Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger. Curr. Genet. 24, 408–416.PubMedGoogle Scholar
  171. Witteveen, C.F.B., Veenhuis, M., and Visser, J. (1992). Localization of glucose oxidase and catalase activities in Aspergillus niger. Appl. Environ. Microbiol. 58, 1190–1194.PubMedGoogle Scholar
  172. Witteveen, C.F.B. and Visser, J. (1995). Polyol pools in Aspergillus niger. FEMS Microbiol. Lett. 134, 57–62.PubMedGoogle Scholar
  173. Wolschek, M.F. and Kubicek, C.P. (1997). The filamentous fungus Aspergillus niger contains two “differentially regulated” trehalose-6-phosphate synthase encoding genes, tpsA and tpsB. J. Biol. Chem. 272, 2729–2735.PubMedGoogle Scholar
  174. Woronick, C.L. and Johnson, M.J. (1960). Carbon dioxide fixation by cell-free extracts of Aspergillus niger. J. Biol. Chem. 235, 9–15.PubMedGoogle Scholar
  175. Wright B.E., Longacre A., and Reimers J. (1996). Models of metabolism in Rhizopus oryzae. J. Theor. Biol. 182, 453–457.PubMedGoogle Scholar
  176. Xuemei, L., Jianping, L., Mo’e, L., and Peilin, C. (1999). L-Lactic acid production using immobilized Rhizopus oryzae in a three-phase fluidized-bed with simultaneous product separation by electrodialysis. Bioprocess Eng. 20, 231–237.Google Scholar
  177. Yang, C.W., Lu, Z.J., and Tsao, G.T. (1995). Lactic acid production by pellet-form Rhizopus oryzae in a submerged system. Appl. Biochem. Biotechnol. 51, 57–71.Google Scholar
  178. Yin, P.M., Nishina, N., Kosakai, Y., Yahiro, K., Park, Y., and Okabe, M. (1997). Enhanced production of L(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. J. Ferment. Bioeng. 84, 249–253.Google Scholar
  179. Yin, P.M., Yahiro, K., Ishigaki, T., Park, Y., and Okabe, M. (1998). L(+)-Lactic acid production by repeated batch culture of Rhizopus oryzae in air-lift bioreactor. J. Ferment. Bioeng. 85, 96–100.Google Scholar
  180. Yu, R.C. and Hang, Y.D. (1991). Purification and characterization of NAD-dependent lactate dehydrogenase from Rhizopus oryzae. Food Chem. 41, 219–225.Google Scholar
  181. Zehentgruber, O., Kubicek, C.P., and Röhr, M. (1980). Alternative respiration of Aspergillus niger. FEMS Microbiol. Lett. 8, 71–74.Google Scholar
  182. Zeikus, J.G., Jain, M.K., and Elankovan, P. (1999). Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51, 545–552.Google Scholar
  183. Zhang, A. and Röhr, M. (2002a). Citric acid fermentation and heavy metal ions: II. The action of elevated manganese ion concentrations. Acta Biotechnol. 22, 375–382.Google Scholar
  184. Zhang, A. and Röhr, M. (2002b). Effects of varied phosphorus concentrations on citric acid fermentation by Aspergillus niger. Acta Biotechnol. 22, 383–390.Google Scholar
  185. Zhou, Y., Dominguez, J.M., Cao, N.J., Du, J.X., and Tsao, G.T. (1999). Optimization of L-lactic acid production from glucose by Rhizopus oryzae ATCC 52311. Appl. Biochem. Biotechnol. 77, 401–407.PubMedGoogle Scholar
  186. Zhou, Y., Du, J.X., and Tsao, G.T. (2000). Mycelial pellet formation by Rhizopus oryzae ATCC 20344. Appl. Biochem. Biotechnol. 84, 779–789.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Jon K. Magnuson
    • 1
  • Linda L. Lasure
    • 1
  1. 1.Pacific Northwest National Laboratory902 Battelle Blvd.Richland

Personalised recommendations