Ecosystem Structure and Function Modeling

  • Hope C. Humphries
  • Jill Baron

Abstract

An important component of ecological assessments is the ability to predict and display changes in ecosystem structure and function over a variety of spatial and temporal scales. These changes can occur over short (less than 1 year) or long time frames (over 100 years). Models may emphasize structural responses (changes in species composition, growth forms, canopy height, amount of old growth, etc.) or functional responses (cycling of carbon, nutrients, and water). Both are needed to display changes in ecosystem components for use in robust ecological assessments. Structure and function models vary in the ecosystem components included, algorithms employed, level of detail, and spatial and temporal scales incorporated. They range from models that track individual organisms to models of broad-scale landscape changes. This chapter describes models appropriate for ecological assessments. The models selected for inclusion can be implemented in a spatial framework and for the most part have been run in more than one system. Model assumptions, advantages, limitations, and applications are discussed, and model features are summarized in Table 18.1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J. D.; Melillo, J. M. 1982. FORTNITE: a computer model of organic matter and nitrogen dynamics in forest ecosystems.Madison: Univ. of Wisconsin Research Bulletin #R3130.Google Scholar
  2. Acevedo, M. F.; Urban, D. L.; Ablan, M. 1996. Landscape scale forest dynamics: GIS, gap, and transition models. In: Goodchild, M. F.; Steyaert, L. T.; Parks, B. O., eds. GIS and environmental modeling: progress and research issues.Fort Collins, CO: GIS World Books: 181–185.Google Scholar
  3. Allen, T. F. H.; Starr, T. B. 1982. Hierarchy: perspectives for ecological complexity.Chicago: University of Chicago Press.Google Scholar
  4. Baker, W. L. 1989a. A review of models of landscape change. Landscape Ecol.2:111–133.CrossRefGoogle Scholar
  5. Baker, W. L. 1989b. Landscape ecology and nature reserve design in the Boundary Waters Canoe Area, Minnesota. Ecology70:23–35.CrossRefGoogle Scholar
  6. Band, L. E. 1989. A terrain based watershed information system. Hydrol. Process.3:151–162.CrossRefGoogle Scholar
  7. Band, L. E. 1991. Distributed parameterization of complex terrain. Surv. Geophys.12:249–270.CrossRefGoogle Scholar
  8. Band, L. E.; Wood, E. F. 1988. Strategies for large-scale, distributed hydrologic simulation. Appl. Math. Cornput. 27:23–37.CrossRefGoogle Scholar
  9. Band, L. E.; Patterson, P.; Nemani, R.; Running, S. W. 1993. Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology. Agr. Forest Meteorol.63:93–126.CrossRefGoogle Scholar
  10. Baron, J.; Ojima, D. S.; Holland, E. A.; Parton, W. J. 1994. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems. Bio geochemistry27:61–82.Google Scholar
  11. Baron, J. S.; Hartman, M. D.; Band, L. E.; Lammers, R. L. 1998a. Sensitivity of high elevation Rocky Mountain watersheds to climate change. Proceedings of the fifth national watershed coalition annual meeting, May 1997. Reno, NV: 269–273.Google Scholar
  12. Baron, J. S.; Hartman, M. D.; Kittel, T. G. F.; Band, L. E.; Ojima, D. S.; Lammers, R. B. 1998b. Effects of land cover, water redistribution, and temperature on ecosystem processes in the South Platte Basin. Ecol. Appl.8:1037-1051.Google Scholar
  13. Bart, J. 1995. Acceptance criteria for using individualbased models to make management decisions. Ecol. Appl.5:411–420.CrossRefGoogle Scholar
  14. Beven, K. J.; Kirkby, M. J. 1979. A physically-based, variable contributing area model of basin hydrology. Hydrolog. Soc. Bull.24:43–69.CrossRefGoogle Scholar
  15. Bonan, G. B. 1989a. A computer model of the solar radiation, soil moisture, and soil thermal regimes in boreal forests. Ecol. Model.45:275–306.CrossRefGoogle Scholar
  16. Bonan, G. B. 1989b. Environmental factors and ecological processes controlling vegetation patterns in boreal forests. Landscape Ecol.3:111–130.CrossRefGoogle Scholar
  17. Bonan, G. B. 1990a. Carbon and nitrogen cycling in North American boreal forests. I. litter quality and soil thermal effects in interior Alaska. Biogeochemistry 10:1–28.CrossRefGoogle Scholar
  18. Bonan, G. B. 1990b. Carbon and nitrogen cycling in North American boreal forests. II. biogeographic patterns. Can. J. For. Res.20:1077–1088.CrossRefGoogle Scholar
  19. Botkin, D. B. 1992. The ecology of forests: theory and evidence.Oxford, UK: Oxford University Press.Google Scholar
  20. Botkin, D. B.; Janak, J. F.; Wallis, J. R. 1972. Some ecological consequences of a computer model of forest growth. J. Ecol.60:849–872.CrossRefGoogle Scholar
  21. Bugmann, H. K. M.; Fischlin, A. 1996. Simulating forest dynamics in a complex topography using gridded climatic data. Climatic Change34:201–211.Google Scholar
  22. Bugmann, H. K. M.; Yan, X.; Sykes, M. T.; Martin, P.; Lindner, M.; Desanker, P. V.; Cumming, S. G. 1996. A comparison of forest gap models: model structure and behavior. Climatic Change34:289–313.Google Scholar
  23. Burke, I. C.; Kittel, T. G. F.; Lauenroth, W. K.; Snook, P.; Yonker, C. M.; Parton, W. J. 1991. Regional analysis of the Central Great Plains: sensitivity to climate variability. BioScience41:685–692.CrossRefGoogle Scholar
  24. Childress, W. M.; Rykiel, Jr., E. J.; Forsythe, W.; Li, B. L.; Wu, H. 1996. Transition rule complexity in grid-based automata models. Landscape Ecol.11:257–266.CrossRefGoogle Scholar
  25. Coffin, D. P.; Lauenroth, W. K. 1990. A gap dynamics simulation model of succession in a semiarid grassland. Ecol. Model.49:229–266.CrossRefGoogle Scholar
  26. Coffin, D. P.; Lauenroth, W. K. 1996. Transient responses of North-American grasslands to changes in climate. Climatic Change34:269–278.CrossRefGoogle Scholar
  27. Cole, C. V.; Paustian, K.; Elliott, E. T.; Metherell, A. L.; Ojima, D. S.; Parton, W. J. 1993. Analysis of agroecosystem carbon pools. Water Air Soil Pollut.70: 357–371.CrossRefGoogle Scholar
  28. Costanza, R.; Sklar, F. H.; White, M. L. 1990. Modeling coastal landscape dynamics. BioScience40:91–107.CrossRefGoogle Scholar
  29. Creed, I. F.; Band, L. E.; Foster, N. W.; Morrison, I. K.; Nicolson, J. A.; Semkin, R. S.; Jeffries, D. S. 1996. Regulation of nitrate-N release from temperate forests: a test of the N flushing hypothesis. Water Resour. Res. 32:3337–3354.CrossRefGoogle Scholar
  30. Dale, V. H.; Shugart, H. H. 1985. A comparison of tree growth models. Ecol. Model.29:145–169.CrossRefGoogle Scholar
  31. Dale, V. H.; Hemstrom, M.; Franklin, J. 1986. Modeling the long-term effects of disturbances on forest succession, Olympic Peninsula, Washington. Can. J. For. Res.16:56–67.CrossRefGoogle Scholar
  32. Dale, V. H.; Gardner, R. H.; DeAngelis, D. L.; Eagar, C. C.; Webb, J. W. 1991. Elevation-mediated effects of balsam woolly adelgid on southern Appalachian spruce-fir forests. Can. J. For. Res.21:1639–1648.CrossRefGoogle Scholar
  33. Daly, C.; Bachelet, D.; Lenihan, J.; Neilson, R. P.; Parton, W. J.; Ojima, D. 2000. Dynamic simulation of tree-grass interactions for global change studies. Ecol. Appl.10:449–469.Google Scholar
  34. Donner, B. L.; Running, S. W. 1986. Water stress response after thinning Pinus contorta stands in Montana. For. Sci.32:614–625.Google Scholar
  35. Dunning, J. B., Jr.; Stewart, D. J.; Danielson, B. J.; Noon, B. R.; Root, T. L.; Lamberson, R. H.; Stevens, E. E. 1995. Spatially explicit population models: current forms and future uses. Ecol. Appl.5:3–11.CrossRefGoogle Scholar
  36. Friend, A. D.; Shugart, H. H.; Running, S. W. 1993. A physiology-based gap model of forest dynamics. Ecology 74:792–797.CrossRefGoogle Scholar
  37. Ginsberg, R. B. 1971. Semi-Markov processes and mobility. J. Math. Soc.1:233–262.CrossRefGoogle Scholar
  38. Ginsberg, R. B. 1972. Critique of probabilistic models: application of the semi-Markov model to migration. J. Math. Soc.2:83–103.CrossRefGoogle Scholar
  39. Grant, W. E. 1988. Models for conservation and wildlife management. Ecol. Model.41:325–326.CrossRefGoogle Scholar
  40. Green, D. G. 1989. Simulated effects of fire, dispersal, and spatial pattern on competition within forest mosaics. Vegetado82:139–153.CrossRefGoogle Scholar
  41. Hall, F. G.; Strebel, D. E.; Sellers, P. J. 1988. Linking knowledge among spatial and temporal scales: vegetation, atmosphere, climate and remote sensing. Landscape Ecol.2:3–22.CrossRefGoogle Scholar
  42. Hansen, A. J.; Garman, S. L.; Weigand, J. F.; Urban, D. L.; McComb, W. C.; Raphael, M. G. 1995. Alternative silvicultural regimes in the Pacific Northwest: simulations of ecological and economic effects. Ecol. Appl.5:535–554.CrossRefGoogle Scholar
  43. He, H. S.; Mladenoff, D. J. 1999. Dynamics of fire disturbance and succession on a heterogeneous forest landscape: a spatially explicit and stochastic simulation approach. Ecology80:81–99.CrossRefGoogle Scholar
  44. Henderson, W.; Wilkins, C. W. 1975. The interaction of bushfires and vegetation. Search6:130–133.Google Scholar
  45. Holland, E. A.; Parton, W. J.; Detling, J. K.; Coppock, D. L. 1992. Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow. Amer. Naturalist140:685–706.CrossRefGoogle Scholar
  46. Holt, R. D.; Pacala, S. W.; Smith, T. W.; Liu, J. 1995. Linking contemporary vegetation models with spatially explicit animal population models. Ecol. Appl. 5:20–27.CrossRefGoogle Scholar
  47. Humphries, H. C.; Coffin, D. P.; Lauenroth, W. K. 1996. An individual-based model of alpine plant distributions. Ecol. Model.84:99–126.CrossRefGoogle Scholar
  48. Hunsaker, C. T.; Nisbet, R. A.; Lam, D. C. L.; Browder, J. A.; Baker, W. L.; Turner, M. G.; Botkin, D. B. 1993. Spatial models of ecological systems and processes: the role of GIS. In: Goodchild, M. F.; Parks, B. O.; Steyaert, L. T., eds. Environmental modeling with GIS. Oxford, UK: Oxford University Press: 248–264.Google Scholar
  49. Hunt, E. R., Jr.; Running, S. W. 1992. Simulated dry matter yields for aspen and spruce stands in North American boreal forest. Can. J. Remote Sens.18:126–133.Google Scholar
  50. Hunt, E. R., Jr.; Piper, S. C.; Nemani, R.; Keeling, C. D.; Otto, R. D.; Running, S. W. 1996. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Global Biogeochem. Cycle.10:431–456.CrossRefGoogle Scholar
  51. Keane, R. E.; Arno, S. F.; Brown, J. K. 1989. FIRE-SUM—an ecological process model for fire succession in western conifer forests.Gen. Tech. Rep. INT-266. Ogden, UT: U.S. Dept. Agric., For. Serv., Intermountain Res. Sta.Google Scholar
  52. Keane, R. E.; Arno, S. F.; Brown, J. K. 1990a. Simulating cumulative fire effects in ponderosa pine/Douglasfir forests. Ecology71:189.CrossRefGoogle Scholar
  53. Keane, R. E.; Arno, S. F.; Brown, J. K.; Tomback, D. F. 1990b. Modelling stand dynamics in whitebark pine (Pinus albicaulis) forests. Ecol. Model.51:73–95.CrossRefGoogle Scholar
  54. Keane, R. E.; Long, D. G.; Menakis, J. P.; Hann, W. J.; Bevins, C. D. 1996a. Simulating coarse-scale vegetation dynamics using the Columbia River basin succession model—CRBSUM.INT-GTR-340. Ogden, UT: U.S. Dept. Agric., For. Serv., Intermountain For. and Range Exp. Sta.Google Scholar
  55. Keane, R. E.; Morgan, P.; Running, S. W. 1996b. FIRE-BGC—a mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the Northern Rocky Mountains.INT-RP-484. Ogden, UT: U.S. Dept. Agric., For. Serv., Intermountain Res. Sta.Google Scholar
  56. Kessell, S. R. 1976. Gradient modeling: a new approach to fire modeling and wilderness resource management. Environ. Manage.1:39–48.CrossRefGoogle Scholar
  57. Kessell, S. R. 1977. Gradient modeling: a new approach to fire modeling and resource management. In: Hall, C. A. S.; Day, Jr., D. W., eds. Ecosystem modeling in theory and practice: an introduction with case histories. New York: John Wiley & Sons: 575–605.Google Scholar
  58. Kessell, S.R. 1979. Phytosociological inference and resource management. Environ. Manage.3:29–40.CrossRefGoogle Scholar
  59. Kessell, S. R. 1990. An Australian geographical information and modeling system for natural area management. Int. J. Geogr. Inf. Syst.4:333–362.CrossRefGoogle Scholar
  60. Kessell, S. R.; Cattelino, P. J. 1978. Evaluation of a fire behavior information integration system for southern California chaparral wildlands. Environ. Manage.2:135–159.CrossRefGoogle Scholar
  61. Kessell, S. R.; Fischer, W. C. 1981. Predicting postfire plant succession for fire management planning.INT-GTR-94. Ogden, UT: U.S. Dept. Agric., For. Serv., Intermountain For. Range Exp. Sta.Google Scholar
  62. Kessell, S. R.; Good, R. B. 1982. PREPLAN (Pristine Environment Planning Language and Simulator) user’s guide for Kosciusko National Park. Sydney: National Parks and Wildlife Service of New South Wales, Special Publication.Google Scholar
  63. Kessell, S. R., Good, R. B.; Hopkins, A. J. M. 1984. Implementation of two new resource management information systems in Australia. Environ. Manage.8: 251–270.CrossRefGoogle Scholar
  64. Korol, R. L.; Running, S. W.; Milner, K. S.; Hunt, Jr., E. R. 1991. Testing a mechanistic carbon balance model against observed tree growth. Can. J. For. Res. 21:1098–1105.CrossRefGoogle Scholar
  65. Kremer, R. G. 1991. Simulating forest response to air pollution: integrating physiological responses to sulphur dioxide with climate-dependent growth processes. Ecol. Model.54:111–126.CrossRefGoogle Scholar
  66. Lammers, R. B.; Band, L. E.; Tague, C. L. 1997. Scaling behaviour of watershed processes. In: van Gardingen, P.; Foody, G.; Curran, P., eds. Scaling up from cell to landscape.Cambridge, UK: Cambridge University Press: 295–317.Google Scholar
  67. Lenihan, J. M.; Daly, C.; Bachelet, D.; Neilson, R. P. 1998. Simulating broad scale fire severity in a dynamic global vegetation model. Northwest Sci.72:91–103.Google Scholar
  68. Liu, J. 1992. ECOLECON: a spatially-explicit model for ecological economics of species conservation in complex forest landscapes.Dissertation. Athens: University of Georgia.Google Scholar
  69. Liu, J. 1993. ECOLECON: an ECOLogical-ECONomic model for species conservation in complex forest landscapes. Ecol. Model.70:63–87.CrossRefGoogle Scholar
  70. Lyon, D.; Monz, C. A.; Brown, R.; Metherell, A. K. 1995. Soil organic matter changes over two decades of winter wheat-fallow cropping in western Nebraska. In: Paul, E. A.; Cole, C. V., eds. Soil organic matter in temperate agricultural ecosystems: a site network approach.Chelsea, UK: Lewis Publishers.Google Scholar
  71. Marsden, M. A. 1983. Modeling the effect of wildfire frequency on forest structure and succession in the northern Rocky Mountains. J. Environ. Manage.16: 45–62.Google Scholar
  72. McKelvey; K. B.; Noon, B. R.; Lamberson, R. H. 1992. Conservation planning for species occupying fragmented landscapes: the case of the northern spotted owl. In: Kareiva, P. M.; Kingsolver, J. G.; Huey, R. B., eds. Biotic interactions and global change.Boston: Sinauer: 424–450.Google Scholar
  73. McLeod, S. D.; Running, S. W. 1988. Comparing site quality indices and productivity in ponderosa pine stands of western Montana. Can. J. For. Res.18:346–352.CrossRefGoogle Scholar
  74. Metherell, A. K.; Harding, L. A.; Cole, C. V.; Parton, W. J. 1993. CENTURY soil organic matter model environment, technical documentation, agroecosystem version 4.0.Unit Technical Report No. 4. Fort Collins, CO: U.S. Dept. Agric., Agric. Res. Serv.; Great Plains System Res.Google Scholar
  75. Metherell, A. K.; Gambardella, C. A.; Parton, W. J.; Peterson, G. A.; Harding, L. A.; Cole, C. V. 1995. Simulation of soil organic matter dynamics in dryland wheat-fallow cropping systems. In: Lal, R., Kimball, J.; Levine, E.; Stewart, B. A., eds. Soil management and greenhouse effect.Boca Raton: CRC Press: 259–270.Google Scholar
  76. Mladenoff, D. J.; He, H. S. 1999. Design, behavior and application of LANDIS, an object-oriented model of forest landscape disturbance and succession. In: Mladenoff, D. J.; Baker, W. L., eds. Advances in spatial modeling of forest landscape change: approaches and applications. Cambridge, UK: Cambridge University Press: 125–162.Google Scholar
  77. Mladenoff, D. J.; Host, G. E.; Boeder, J.; Crow, T. R. 1996. LANDIS: a spatial model of forest landscape disturbance, succession, and management. In: Good-child, M. F.; Steyaert, L. T.; Parks, B. O., eds. GIS and environmental modeling: progress and research issues.Fort Collins, CO: GIS World Books: 175–179.Google Scholar
  78. Neilson, R. P. 1995. A model for predicting continental-scale vegetation distribution and water balance. Ecol. Appl.5:362–385.CrossRefGoogle Scholar
  79. Neilson, R. P.; Marks, D. 1994. A global perspective of regional vegetation and hydrologie sensitivities and risks from climatic change. J. Veg. Sci.5:715–730.CrossRefGoogle Scholar
  80. Nemani, R.; Running, S. W. 1989. Testing a theoretical climate-soil-leaf area hydrologie equilibrium of forests using satellite data and ecosystem simulation. Agr. Forest Meteorol.44:245–294.CrossRefGoogle Scholar
  81. Nemani R; Pierce, R.; Band, L. E.; Running, S. W. 1991. Forest ecosystem processes at the watershed scale: sensitivity to remotely sensed leaf area index observations. Int. J. Remote Sens.14:2519–2534.CrossRefGoogle Scholar
  82. Nemani, R.; Running, S. W.; Band, L. E.; Peterson, D. L. 1993. Regional hydroecological simulation system: an illustration of the integration of ecosystem models in a GIS. In: Goodchild, M. F.; Parks, B. O.; Steyaart, L. T., eds. Environmental modeling with GIS. Oxford, UK: Oxford University Press: 296–304.Google Scholar
  83. Ojima, D. S.; Schimel, D. S.; Parton, W. J.; Owensby, C. E. 1994. Long-and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24:67–84.CrossRefGoogle Scholar
  84. Olson, J. S.; Watts, J. A.; Allison, L. J. 1983. Carbon in live vegetation of major world ecosystems.ORNL-5862. Oak Ridge, TN: Oak Ridge Natl. Lab.Google Scholar
  85. Parton, W. J.; Schimel, D. S.; Cole, C. V.; Ojima, D. S. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Amer. J.51:1173–1179.Google Scholar
  86. Parton, W. J.; Stewart, J. W. B.; Cole, C. V. 1988. Dynamics of C, N, P, and S in grassland soils: a model. Biogeochemistry5:109–131.CrossRefGoogle Scholar
  87. Parton, W. J.; Schimel, D. S.; Ojima, D. S. 1994. Environmental change in grasslands: assessment using models. Climate Change28:111–141.CrossRefGoogle Scholar
  88. Pastor, J.; Post, W. M. 1986. Influences of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry2:3–27.CrossRefGoogle Scholar
  89. Pastor, J.; Bonde, J.; Johnston, C.; Naiman, R. J. 1993. Markovian analysis of the spatially dependent dynamics of beaver ponds. Lectures Math. Life Sci. 23:5–27.Google Scholar
  90. Paustian, K.; Andren, O.; Clarholm, M.; Hansson, A. C.; Johansson, G.; Lagerlof, J.; Lindberg, T.; Pettersson, R.; Sohlenius, B. 1990. Carbon and nitrogen budgets of four agro-ecosystems with annual and perennial crops, with and without N fertilization. J. Appl. Ecol. 27:60–84.CrossRefGoogle Scholar
  91. Pielke, R. A.; Cotton, W. R.; Walko, R. L.; Tremback, C. J.; Lyons, W. A.; Grasso, L. D.; Nichols, M. E.; Moran, M. D.; Wesley, D. A.; Lee, T. J.; Copeland, J. H. 1992. A comprehensive meteorological modeling system—RAMS. Meteorol. Atmos. Phys.49:69–91.CrossRefGoogle Scholar
  92. Potter; M. W.; Kessell, S. R.; Cattelino, P. J. 1979. FOR-PLAN: a forest planning language and simulator. Environ. Manage.3:59–72.CrossRefGoogle Scholar
  93. Prentice, I. C.; Cramer, W.; Harrison, S. P.; Leemans, R.; Monserud, R. A.; Solomon, A. M. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeography 19:117–134.CrossRefGoogle Scholar
  94. Pulliam, H. R.; Dunning, Jr., J. B.; Liu, J. 1992. Population dynamics in complex landscapes: a case study. Ecol. Appl.2:165–177.CrossRefGoogle Scholar
  95. Rasmussen, P. E.; Parton, W. J. 1994. Long-term effects of residue management in wheat/fallow: I. inputs, yield, and soil organic matter. Soil Sci. Soc. Amer. J. 58:523–530.CrossRefGoogle Scholar
  96. Roberts, D. W. 1996a. Landscape vegetation modelling with vital attributes and fuzzy systems theory. Ecol. Model.90:175–184.CrossRefGoogle Scholar
  97. Roberts, D. W. 1996b. Modelling forest dynamics with vital attributes and fuzzy systems theory. Ecol. Model. 90:161–173.CrossRefGoogle Scholar
  98. Running, S.W.; Coughlan, J. C. 1988. A general model of forest ecosystem processes for regional application. Ecol. Model.42:125–154.CrossRefGoogle Scholar
  99. Running, S. W.; Gower, S. T. 1991. FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. dynamic carbon allocation and nitrogen budgets. Tree Physiol. 9:147–160.PubMedGoogle Scholar
  100. Running, S. W.; Hunt, Jr., E. R.1993. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer, J. R.; Field, C, eds. Scaling physiological processes: leaf to globe.San Diego, CA: Academic Press: 141–158.Google Scholar
  101. Running, S. W.; Nemani, R. R. 1991. Regional hydrologic and carbon balance responses of forests resulting from potential climate change. Climatic Change 19:349–368.CrossRefGoogle Scholar
  102. Running, S. W.; Nemani, R. R.; Hungerford, R. D. 1987. Extrapolation of synoptic meteorological data in mountainous terrain, and its use for simulating forest evapotranspiration and photosynthesis. Can. J. For. Res.17:472–483.CrossRefGoogle Scholar
  103. Running, S. W.; Nemani, R. R.; Peterson, D. L.; Band, L. E.; Potts, D. F.; Pierce, L. L.; Spanner, M. A. 1989. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology70:1090–1101.CrossRefGoogle Scholar
  104. Sanford, R. L., Jr.; Parton, W. J.; Ojima, D. S.; Lodge, D. J. 1991. Hurricane effects on soil organic matter dynamics and forest production in the Luquillo Experimental Forest, Puerto Rico: results of simulation modeling. Biotropica23:364–372.CrossRefGoogle Scholar
  105. Schimel, D. S.; Parton, W. J.; Kittel, T. G. F.; Ojima, D. S.; Cole, C. V. 1990. Grassland biogeochemistry: links to atmospheric processes. Climate Change17:13–25.CrossRefGoogle Scholar
  106. Schimel, D. S.; Kittel, T. G. F.; Parton, W. J. 1991. Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology. Tellus43AB: 188–203.Google Scholar
  107. Schimel, D. S.; Braswell, B. H.; Holland, E. A.; McKeown, R.; Ojima, D. S.; Painter, T. H.; Parton, W. J.; Townsend, A. R. 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem. Cycle.8:279–293.CrossRefGoogle Scholar
  108. Schimel, D. S.; Braswell, B. H.; McKeown, R.; Ojima, D. S.; Parton, W. J.; Pulliam, W. 1996. Climate and nitrogen controls on geography and timescales of terrestrial biogeochemical cycling. Global Biogeochem. Cycle.10:677–692.CrossRefGoogle Scholar
  109. Shugart, H. H. 1984. A theory of forest dynamics: the ecological implications of forest succession models. New York: Springer-Verlag.Google Scholar
  110. Shugart, H. H. 1998. Terrestrial ecosystems in changing environments.Cambridge, UK: Cambridge University Press.Google Scholar
  111. Shugart, H. H.; Smith, T. M. 1996. A review of forest patch models and their application to global change research. Climatic Change34:131–153.CrossRefGoogle Scholar
  112. Sklar, F. H.; Costanza, R. 1986. A spatial simulation of ecosystem succession in a Louisiana Coastal landscape. In: Crosbie, R.; Luker, P., eds. Proceedings of the 1986 Summer Computer Simulation Conference, Society for Computer Simulation.San Diego, CA: 467–472.Google Scholar
  113. Sklar, F. H.; Costanza, R. 1991. The development of dynamic spatial models for landscape ecology: a review and prognosis. In: Turner, M. G.; Gardner, R. H., eds. Quantitative methods in landscape ecology: the analysis and interpretation of environmental heterogeneity. New York: Springer-Verlag: 239–288.Google Scholar
  114. Sklar, F. H.; Costanza, R.; Day, J. W. 1985. Dynamic spatial simulation modelling of coastal wetland habitat succession. Ecol. Model.29:261–281.CrossRefGoogle Scholar
  115. Smith, T. M.; Urban, D. L. 1988. Scale and resolution of forest structural pattern. Vegetado74:143–150.CrossRefGoogle Scholar
  116. Thiéry, J. M.; D’Herbès, J. M.; Valentin, C. 1995. A model simulating the genesis of banded vegetation patterns in Niger. J. Ecol.83:497–507.CrossRefGoogle Scholar
  117. Turner, M. G.; Dale, V. H. 1991. Modeling landscape disturbance. In: Turner, M. G.; Gardner, R. H., eds. Quantitative methods in landscape ecology: the analysis and interpretation of environmental heterogeneity. New York: Springer-Verlag: 323–351.Google Scholar
  118. Turner, M. G.; Wu, Y.; Romme, W. H.; Wallace, L. L. 1993. A landscape simulation model of winter foraging by large ungulates. Ecol. Model.69:163–184.CrossRefGoogle Scholar
  119. Turner, M. G.; Wu, Y.; Wallace, L. L.; Romme, W. H.; Brenkert, A. 1994. Simulating winter interactions among ungulates, vegetation, and fire in northern Yellowstone National Park. Ecol. Appl.4:472–496.CrossRefGoogle Scholar
  120. Turner, M. G.; Arthaud, G. J.; Engstrom, R. T.; Hejl, S. J.; Liu, J.; Loeb, S.; McKelvey, K. 1995. Usefulness of spatially explicit population models in land management. Ecol. Appl.5:12–16.CrossRefGoogle Scholar
  121. Urban, D. L. 1990. A versatile model to simulate forest pattern: a user’s guide to ZELIG version 1.0.Google Scholar
  122. Urban, D. L.; Shugart, H. H. 1992. Individual-based models of forest succession. In: Glenn-Lewin, D. C.; Peet, R. K.; Veblen, T. T. eds. Plant succession: theory and prediction.London: Chapman and Hall: 249–292.Google Scholar
  123. Urban, D. L.; Smith, T. M. 1989. Extending individual-based forest models to simulate large-scale environmental patterns. Bull. Ecol. Soc. Amer.70:284.Google Scholar
  124. Urban, D. L.; Bonan, G. B.; Smith, T. M; Shugart, H. H. 1991. Spatial applications of gap models. For. Ecol. Manage.42:95–110.CrossRefGoogle Scholar
  125. VEMAP Members. 1995. Vegetation/ecosystem modeling and analysis project: comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem. Cycle.9: 407–437.CrossRefGoogle Scholar
  126. Watt, A. S. 1947. Pattern and process in the plant community. J. Ecol.35:1–22.CrossRefGoogle Scholar
  127. Wedin, D. A.; Tilman, D. 1996. Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science274:1720–1723.PubMedCrossRefGoogle Scholar
  128. Weishampel, J. F.; Urban, D. L.; Smith, J. B.; Shugart, H. H. 1992. A comparison of semivariograms from a forest transect model and remotely sensed data. J. Veg. Sci.3:521–526.CrossRefGoogle Scholar
  129. Woolhouse, M. E. J.; Harmsen, R. 1987. A transition matrix model of seasonal changes in mite populations. Ecol. Model.37:167–189.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hope C. Humphries
  • Jill Baron

There are no affiliations available

Personalised recommendations