Advertisement

New Experimental Results in Differential — Linear Cryptanalysis of Reduced Variants of DES

  • Anna Górska
  • Karol Górski
  • Zbigniew Kotulski
  • Andrzej Paszkiewicz
  • Janusz Szczepański
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 664)

Abstract

At the beginning of the paper we give an overview of the linear and differential cryptanalysis of block ciphers. We describe two extensions of linear cryptanalysis (analysis with multiple expressions [7] and differentiallinear cryptanalysis [10] which form the basis of the conducted experiments. Then we describe the functioning of truncated differentials [1,8] and the usage of differential structures [1,2,3].

In the second part of the article we present experimental results of implementation of the differential-linear cryptanalysis with multiple expressions applied to reduced DES variants. In an attack on DES reduced to 8 rounds we obtained a significant reduction in the number of needed chosen pairs of texts — reduction by a factor greater than 4.

Keywords

cryptology linear cryptanalysis differential cryptanalysis multiple expressions differential structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Biham, “Differential Cryptanalysis and its Extensions”, Proceedings of V National Conference on Applications of Cryptography ENIGMA’2001, ISBN 83-911317-7-7.Google Scholar
  2. [2]
    E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like cryptosystems”, Journal of Cryptology, 4(1):3–72, 1991.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    E. Biham, A. Shamir, “Differential Cryptanalysis of Data Encryption Standard”, Springer Verlag, 1993.Google Scholar
  4. [4]
    U. Blöcher, M. Dichtl, „Problems with the Linear Cryptanalysis of DES Using more than one Active S-Box per Round”, Fast Software Encryption, Springer Verlag 1994, ISBN 3-540-60590-8.Google Scholar
  5. [5]
    W. Feller, „Introduction to the probability theory”, PWN 1977.Google Scholar
  6. [6]
    C. Harpes, G.G. Kramer, J. L. Massey, „A Generalization of Linear Cryptanalysis and Applicability of Matsui’s piling-up Lemma”, Advances in Cryptology Eurocrypt’95, Sprmger Verlag 1995, ISBN3-540-59409-4.Google Scholar
  7. [7]
    B. S. Kaliski Jr., M.J.B Robshaw, „Linear Cryptanalysis Using Multiple Approximations”, Advances in Cryptology Crypto’94, Springer Verlag 1994, ISBN 3-540-58333-5.Google Scholar
  8. [8]
    L.R. Knudsen, “Truncated and Higher Order Differentials”, Second International Workshop on Fast Software Encryption, Lueven, Belgium, 1994, pp. 196–211.Google Scholar
  9. [9]
    L.R. Knudsen, M.J.B. Robshaw, „Non-Linear Approximations in Linear Cryptanalysis, Advances in Cryptology Eurocrypt’96, Springer Verlag 1996, ISBN 3-540-61186-X.Google Scholar
  10. [10]
    S. Langford, M.E. Hellman, „Differential-linear Cryptanalysis”, Advances in Cryptology Crypto’94, Springer Verlag 1994, ISBN 3-540-58333-5.Google Scholar
  11. [11]
    M. Matsui, „Linear Cryptanalysis Method for DES Cipher”, Advances in Cryptology Eurocrypt’93.Google Scholar
  12. [12]
    M. Matsui, „On Correlation Between the Order of S-boxes and the Strength of DES”, Advances in Cryptology Eurocrypt’94, Springer Verlag 1994, ISBN 3-540-60176-7.Google Scholar
  13. [13]
    M. Matsui, „The First Experimental cryptanalysis of Data Encryption Standard”, Advances in Cryptology Crypto’94, Springer Verlag 1994, ISBN 3-540-58333-5.Google Scholar
  14. [14]
    K. Ohta, S. Morai, K. Aoki,„Improving the Search Algorithm for Best Linear Expression”, Advances in Cryptology Crypto’95, Springer Verlag 1995, ISBN 3-540-60221-6.Google Scholar
  15. [15]
    K. Sakurai, S. Furuya, “Improving linear cryptanalysis of LOKI91 by probabilistic counting method”, Fast Software Encryption Workshop (FSE4), Haifa, Israel, 1997.Google Scholar
  16. [16]
    T. Shimoyama, T. Kaneko, “Quadratic Relation of S-Box and Its Application to the Linear Attack of Full Round DES”, Advances in Cryptology, Crypto’98. ISBN 3-540-64892-5.Google Scholar
  17. [17]
    A. Zugaj, “The linear expression search algorithms”, Proceedings of IV National Conference on Applications of Cryptography ENIGMA’2000, ISBN 83-911317-3-4.Google Scholar
  18. [18]
    A. Zugaj, K. Górski, Z. Kotulski, A. Paszkiewicz, J. Szczepański, S. Trznadel, “Linear cryptanalysis of DES algorithm”, (in Polish), seminar notes Institute of Telecommunications, Warsaw University of Technology, April 1998.Google Scholar
  19. [19]
    A. Zugaj, K. Górski, Z. Kotulski, A. Paszkiewicz, J. Szczepański, S. Trznadel, „Linear cryptanalysis”, (in Polish) PWT, December 1998.Google Scholar
  20. [20]
    A. Zugaj, K. Górski, Z. Kotulski, J. Szczepański, A. Paszkiewicz, “Extending linear cryptanalysis — theory and experiments”, Regional Conference on Military Communication and Information Systems, RCMCIS’99, October 6-8, 1999.Google Scholar
  21. [21]
    A. Zugaj, K. Górski, Z. Kotulski, A. Paszkiewicz, J. Szczepański, “New constructions in linear cryptanalysis of block ciphers”, ACS’2000, October 2000.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Anna Górska
    • 1
  • Karol Górski
    • 1
  • Zbigniew Kotulski
    • 2
  • Andrzej Paszkiewicz
    • 3
  • Janusz Szczepański
    • 2
  1. 1.Cryptography Dept.ENIGMA Information Security Systems Sp. z o.o.WarsawPoland
  2. 2.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland
  3. 3.Institute of TelecommunicationsWarsaw University of TechnologyWarsawPoland

Personalised recommendations