Redirected Walking in Mixed Reality Training Applications

  • Evan A. SumaEmail author
  • David M. Krum
  • Mark Bolas


To create effective immersive training experiences, it is important to provide intuitive interfaces that allow users to move around and interact with virtual content in a manner that replicates real world experiences. However, natural locomotion remains an implementation challenge because the dimensions of the physical tracking space restrict the size of the virtual environment that users can walk through. To relax these limitations, redirected walking techniques may be employed to enable walking through immersive virtual environments that are substantially larger than the physical tracking area. In this chapter, we present practical design considerations for employing redirected walking in immersive training applications and recent research evaluating the impact on spatial orientation. Additionally, we also describe an alternative implementation of redirection that is more appropriate for mixed reality environments. Finally, we discuss challenges and future directions for research in redirected walking with the goal of transitioning these techniques into practical training simulators.


Virtual Environments Redirected walking Locomotion Mixed reality Augmented reality Redirection Reorientation Human-computer interaction 


  1. 1.
    Berthoz A (2000) The brain’s sense of movement. Harvard University Press, CambridgeGoogle Scholar
  2. 2.
    Bruder G, Steinicke F, Hinrichs K, Lappe M (2009) Arch-explore: a natural user interface for immersive architectural walkthroughs. In: IEEE symposium on 3D user interfaces, pp 145–152Google Scholar
  3. 3.
    Bruder G, Steinicke F, Hinrichs K, Lappe M (2009) Reorientation uring body turns. In: Joint virtual reality conference of EGVE-ICAT-EuroVR, pp 145–152Google Scholar
  4. 4.
    Darken RP, Cockayne WR, Carmein D (1997) The omni-directional treadmill: a locomotion device for virtual worlds. In: ACM symposium on user interface software and technology, pp 213–221Google Scholar
  5. 5.
    Insko BE (2001) Passive haptics significantly enhances virtual environments. Ph.D. thesis, University of North Carolina, Chapel HillGoogle Scholar
  6. 6.
    Jerald J, Peck TC, Steinicke F, Whitton MC (2008) Sensitivityto scenemotion for phases of head yaws. In: Symposium on applied perception in graphics and visualization, ACM Press, New York, pp 155–162. doi: 10.1145/1394281.1394310
  7. 7.
    Kohli L, Burns E, Miller D, Fuchs H (2005) Combining passive haptics withredirected walking. In: International conference on artificial reality and telexistence, ACM Press, New York, pp 253–254. doi: 10.1145/1152399.1152451
  8. 8.
    Llobera J, Spanlang B, Ruffini G, Slater M (2010) Proxemics withmultiple dynamic characters in an immersive virtual environment. ACM Trans Appl Percept 8(1):1–12. doi: 10.1145/1857893.1857896 CrossRefGoogle Scholar
  9. 9.
    Medina E, Fruland R, Weghorst S (2008) Virtusphere: walking in a human size VR “hamster ball”. In: Human factors and ergonomics society annual meeting, pp 2102–2106Google Scholar
  10. 10.
    Muller P, Schmorrow D, Buscemi T (2008) The infantry immersion trainer: todays holodeck. Marine Corps GazetteGoogle Scholar
  11. 11.
    Neth CT, Souman JL, Engel D, Kloos U, Buthoff HH, Mohler BJ (2011) Velocity-dependent dynamic curvature gain for redirected walking. In: Proceedings of the IEEE virtual reality, pp 151–158Google Scholar
  12. 12.
    Peck TC, Fuchs H, Whitton MC (2009) Evaluation of reorientation techniques and distractors for walking in large virtual environments. IEEE Trans Vis Comput Graph 15(3):383–394. doi: 10.1109/TVCG.2008.191 CrossRefGoogle Scholar
  13. 13.
    Quinn K (2011) US Army to get dismounted soldier training system. Defense News Train Simul JGoogle Scholar
  14. 14.
    Razzaque S (2005) Redirected walking. Ph.D. thesis, University of North Carolina, Chapel HillGoogle Scholar
  15. 15.
    Riecke BE, Feuereissen D, Rieser JJ (2010) Spatialized sound inuences biomechanical self-motion illusion (“Vection”). In: Symposium on applied perception in graphics and visualization, p 158Google Scholar
  16. 16.
    Ruddle RA, Lessels S (2009) The benefits of using a walkinginterface to navigate virtual environments. ACM Trans Comput Hum Interact 16(1):1–18. doi: 10.1145/1502800.1502805 CrossRefGoogle Scholar
  17. 17.
    Schwaiger MC, Thummel T, Ulbrich H (2007) A 2D-motion platform: the cybercarpet. In: Joint EuroHaptics conference and symposium on haptic interfacesfor virtual environment and teleoperator systems. IEEE, pp 415–420. doi: 10.1109/WHC.2007.1
  18. 18.
    Slater M (2009) Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos Trans R soc London Ser B Biol Sci 364(1535):3549–3557. doi: 10.1098/rstb.2009.0138 CrossRefGoogle Scholar
  19. 19.
    Souman JL, Giordano PR, Schwaiger MC, Frissen I, Thumel T, Ulbrich H, Luca AD, Bulthoff HH, Ernst MO (2011) CyberWalk: enabling unconstrained omnidirectional walking through virtual environments. ACM Trans Appl Percept 8(4):1–22. doi: 10.1145/2043603.2043607 CrossRefGoogle Scholar
  20. 20.
    Steinicke F, Bruder G, Hinrichs K, Jerald J, Frenz H, Lappe M (2009) Real walking through virtual environments by redirection techniques. J Virtual Real Broadcast 6(2)Google Scholar
  21. 21.
    Steinicke F, Bruder G, Jerald J, Frenz H, Lappe M (2010) Estimation of detection thresholds for redirected walking techniques. IEEE Trans Vis Comput Graph 16(1):17–27. doi: 10.1109/TVCG.2009.62 CrossRefGoogle Scholar
  22. 22.
    Suma EA, Clark S, Finkelstein SL, Wartell Z, Krum DM, Bolas M (2011) Leveraging change blindness for redirection in virtual environments. In: Proceedings of the IEEE virtual reality, pp 159–166Google Scholar
  23. 23.
    Suma EA, Finkelstein SL, Clark S, Goolkasian P, Hodges LF (2010) Effects of travel technique and gender on a divided attention task in a virtual environment. In: IEEE symposium on 3D user interfaces. IEEE, pp 27–34. doi: 10.1109/3DUI.2010.5444726
  24. 24.
    Suma EA, Finkelstein SL, Reid M, V Babu S, Ulinski AC, Hodges LF (2010) Evaluation of the cognitive effects of travel technique in complex real and virtual environments. IEEE Trans Vis Comput Graph 16(4):690–702. doi: 10.1109/TVCG.2009.93 CrossRefGoogle Scholar
  25. 25.
    Suma EA, Krum DM, Bolas M (2011) Redirection on mixed reality walking surfaces. In: IEEE VR workshop on perceptual illusions in virtual environments, pp 33–35Google Scholar
  26. 26.
    Suma EA, Krum DM, Finkelstein SL, Bolas M (2011) Effects of redirection on spatial drientation in real and virtual environments. In: IEEE symposium on 3D user interfaces, pp 35–38Google Scholar
  27. 27.
    Templeman JN, Denbrook PS, Sibert LE (1999) Virtual locomotion: walking in place through virtual environments. Presence Teleoper Virtual Environ 8(6):598–617. doi: 10.1162/105474699566512 CrossRefGoogle Scholar
  28. 28.
    Usoh M, Arthur K, Whitton MC, Bastos R, Steed A, Slater M, Brooks FP (1999) Walking \(>\) walking-in-place \(>\) flying, in virtual environments. In: ACM conference on computer graphics and interactive techniques (SIGGRAPH). ACM Press, New York, pp 359–364. doi: 10.1145/311535.311589
  29. 29.
    Waller D, Bachmann E, Hodgson E, Beall AC (2007) The HIVE: a huge immersive virtual environment for research in spatial cognition. Behav Res Methods 39(4):835–843CrossRefGoogle Scholar
  30. 30.
    Zanbaka CA, Lok BC, Babu SV, Ulinski AC, Hodges LF (2005) Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment. IEEE Trans Vis Comput Graph 11(6):694–705. doi: 10.1109/TVCG.2005.92 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Creative TechnologiesUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.School of Cinematic ArtsInstitute for Creative Technologies, University of Southern CaliforniaLos AngelesUSA

Personalised recommendations