Advertisement

Cystatins of Parasitic Organisms

  • Christian Klotz
  • Thomas Ziegler
  • Emilia Daniłowicz-Luebert
  • Susanne Hartmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 712)

Abstract

The cystatin superfamily comprises several groups of protease inhibitors. In this chapter we will focus on I25 family members, which consist predominantly of the type 2 cystatins. Recently, a wealth of information on these molecules and their activities has been described. Parasite cystatins are shown to have dual functions via interaction with both parasite and host proteases. Thereby, parasite cystatins are not only essentially involved in the regulation of physiological processes during parasite development, but also represent important pathogenicity factors. Interestingly, some studies indicate that parasite cystatins evolved exceptional immuno-modulatory properties. these capacities could be exploited to interfere with unwanted immune responses in unrelated human inflammatory diseases. We highlight the different biological roles of parasite cystatins and the anticipated future developments.

Keywords

Cysteine Protease Visceral Leishmaniasis Pathogenic Organism Cysteine Protease Inhibitor Parasitic Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahamson M, Alvarez-Fernandez M, Nathanson CM. Cystatins. Biochem Soc Symp 2003; 70:179–199.PubMedGoogle Scholar
  2. 2.
    Kopitar-Jerala N. The role of cystatins in cells of the immune system. FEBS Lett 2006; 580:6295–6301.PubMedCrossRefGoogle Scholar
  3. 3.
    Kordis D, Turk V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol Biol 2009; 9:266.PubMedCrossRefGoogle Scholar
  4. 4.
    Turk V, Stoka V, Turk D. Cystatins: biochemical and structural properties and medical relevance. Front Biosci 2008; 13:5406–5420.PubMedCrossRefGoogle Scholar
  5. 5.
    Zavasnik-Bergant T. Cystatin protease inhibitors and immune functions. Front Biosci 2008; 13:4625–4637.PubMedCrossRefGoogle Scholar
  6. 6.
    Rawlings ND, Barrett AJ. Evolution of proteins of the cystatin superfamily. J Mol Evol 1990; 30:60–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Rawlings ND, Barrett AJ, Bateman A. MEROPS:the peptidase database. Nucleic Acids Res 2010;38:D227–D233.PubMedCrossRefGoogle Scholar
  8. 8.
    Bode W, Engh R, Musil D et al. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. Embo J 1988; 7:2593–2599.PubMedGoogle Scholar
  9. 9.
    Hall A, Ekiel I, Mason RW et al. Structural basis for different inhibitory specificities of human cystatins C and D. Biochemistry 1998; 37:4071–4079.PubMedCrossRefGoogle Scholar
  10. 10.
    Alvarez-Fernandez M, Barrett AJ, Gerhartz B et al. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem 1999; 274:19195–19203.PubMedCrossRefGoogle Scholar
  11. 11.
    Staniforth RA, Giannini S, Higgins ID et al. Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. Embo J 2001; 20:4774–4781.PubMedCrossRefGoogle Scholar
  12. 12.
    Janowski R, Kozak M, Jankowska E et al. Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol 2001; 8:316–320.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee C, Bongcam-Rudloff E, Sollner C et al. Type 3 cystatins; fetuins, kininogen and histidine-rich glycoprotein. Front Biosci 2009; 14:2911–2922.PubMedCrossRefGoogle Scholar
  14. 14.
    Gregory WF, Maizels RM. Cystatins from filarial parasites: evolution, adaptation and function in the host-parasite relationship. Int J Biochem Cell Biol 2008; 40:1389–1398.PubMedCrossRefGoogle Scholar
  15. 15.
    Mulcahy G, O’Neill S, Fanning J et al. Tissue migration by parasitic helminths—an immunoevasive strategy? Trends Parasitol 2005; 21:273–277.PubMedCrossRefGoogle Scholar
  16. 16.
    Read AF, Skorping A. The evolution of tissue migration by parasitic nematode larvae. Parasitology 1995; 111:359–371.PubMedCrossRefGoogle Scholar
  17. 17.
    Karim S, Miller NJ, Valenzuela J et al. RNAi-mediated gene silencing to assess the role of synaptobrevin and cystatin in tick blood feeding. Biochem Biophys Res Commun 2005; 334:1336–1342.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang SX, Pandey KC, Scharfstein J et al. The structure of chagasin in complex with a cysteine protease clarifies the binding mode and evolution of an inhibitor family. Structure 2007; 15:535–543.PubMedCrossRefGoogle Scholar
  19. 19.
    Pandey KC, Singh N, Arastu-Kapur S et al. Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PloS Pathog 2006; 2:e117.PubMedCrossRefGoogle Scholar
  20. 20.
    Rennenberg A, Lehmann C, Heitmann A et al. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PloS Pathog 2010; 6:e1000825.PubMedCrossRefGoogle Scholar
  21. 21.
    Huang R, Que X, Hirata K et al. The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Mol Biochem Parasitol 2009; 164:86–94.PubMedCrossRefGoogle Scholar
  22. 22.
    Lustigman S, Brotman B, Huima T et al. Characterization of an onchocerca volvulus CDNA clone encoding a genus specific antigen present in infective larvae and adult worms. Mol Biochem Parasitol 1991;45:65–75.PubMedCrossRefGoogle Scholar
  23. 23.
    Lustigman S, Brotman B, Huima T et al. Molecular cloning and characterization of onchocystatin, a cysteine proteinase inhibitor of onchocerca volvulus. J Biol Chem 1992; 267:17339–17346.PubMedGoogle Scholar
  24. 24.
    Hashmi S, Zhang J, Oksov Y et al. The Caenorhabditis elegans CPI-2a cystatin-like inhibitor has an essential regulatory role during oogenesis and fertilization. J Biol Chem 2006; 281:28415–28429.PubMedCrossRefGoogle Scholar
  25. 25.
    Hartmann S, Kyewski B, Sonnenburg B et al. A filarial cysteine protease inhibitor down-regulates T-cell proliferation and enhances interleukin-10 production. Eur J Immunol 1997; 27:2253–2260.PubMedCrossRefGoogle Scholar
  26. 26.
    Manoury B, Gregory WF, Maizels RM et al. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr Biol 2001; 11:447–451.PubMedCrossRefGoogle Scholar
  27. 27.
    Schonemeyer A, Lucius R, Sonnenburg B et al. Modulation of human T-cell responses and macrophage functions by onchocystatin, a secreted protein of the filarial nematode Onchocerca volvulus. J Immunol 2001; 167:3207–3215.PubMedGoogle Scholar
  28. 28.
    Dainichi T, Maekawa Y, Ishii K et al. Molecular cloning of a cystatin from parasitic intestinal nematode, Nippostrongylus brasiliensis. J Med Invest 2001; 48:81–87.PubMedGoogle Scholar
  29. 29.
    Dainichi T, Maekawa Y, Ishii K et al. Nippocystatin, a cysteine protease inhibitor from Nippostrongylus brasiliensis, inhibits antigen processing and modulates antigen-specific immune response. Infect Immun 2001; 69:7380–7386.PubMedCrossRefGoogle Scholar
  30. 30.
    Newlands GF, Skuce PJ, Knox DP et al. Cloning and expression of cystatin, a potent cysteine protease inhibitor from the gut of Haemonchus contortus. Parasitology 2001; 122:371–378.PubMedCrossRefGoogle Scholar
  31. 31.
    Khaznadji E, Collins P, Dalton JP et al. A new multi-domain member of the cystatin superfamily expressed by Fasciola hepatica. Int J Parasitol 2005; 35:1115–1125.PubMedCrossRefGoogle Scholar
  32. 32.
    Mulcahy G, O’Connor F, Clery D et al. Immune responses of cattle to experimental anti-Fasciola hepatica vaccines. Res Vet Sci 1999; 67:27–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Tarasuk M, Vichasri Grams S, Viyanant V et al. Type I cystatin (stefin) is a major component of Fasciola gigantica excretion/secretion product. Mol Biochem Parasitol 2009; 167:60–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Morales FC, Furtado DR, Rumjanek FD. The N-terminus moiety of the cystatin SmCys from Schistosoma mansoni regulates its inhibitory activity in vitro and in vivo. Mol Biochem Parasitol 2004; 134:65–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Wasilewski MM, Lim KC, Phillips J et al. Cysteine protease inhibitors block schistosome hemoglobin degradation in vitro and decrease worm burden and egg production in vivo. Mol Biochem Parasitol 1996; 81:179–189.PubMedCrossRefGoogle Scholar
  36. 36.
    Yamaji K, Tsuji N, Miyoshi T et al. A salivary cystatin, HlSC-1, from the ixodid tick Haemaphysalis longicornis play roles in the blood-feeding processes. Parasitol Res 2009; 106:61–68.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhou J, Liao M, Gong H et al. Characterization of Hlcyst-3 as a member of cystatins from the tick Haemaphysalis longicornis. Exp Appl Acarol 2010; Epub ahead of print.Google Scholar
  38. 38.
    Zhou J, Liao M, Ueda M et al. Characterization of an intracellular cystatin homolog from the tick Haemaphysalis longicornis. Vet Parasitol 2009; 160:180–183.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou J, Ueda M, Umemiya R et al. A secreted cystatin from the tick Haemaphysalis longicornis and its distinct expression patterns in relation to innate immunity. Insect Biochem Mol Biol 2006; 36:527–535.PubMedCrossRefGoogle Scholar
  40. 40.
    Grunclova L, Horn M, Vancova M et al. Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity. Biol Chem 2006; 387:1635–1644.PubMedCrossRefGoogle Scholar
  41. 41.
    Lima CA, Sasaki SD, Tanaka AS. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus. Biochem Biophys Res Commun 2006; 347:44–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Kotsyfakis M, Karim S, Andersen JF et al. Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J Biol Chem 2007; 282:29256–29263.PubMedCrossRefGoogle Scholar
  43. 43.
    Kotsyfakis M, Sa-Nunes A, Francischetti IM et al. Antiinflammatory and immunosuppressive activity of sialostatin L, A salivary cystatin from the tick Ixodes scapularis. J Biol Chem 2006; 281:26298–26307.PubMedCrossRefGoogle Scholar
  44. 44.
    Bird PI, Trapani JA, Villadangos JA. Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 2009; 9:871–882.PubMedCrossRefGoogle Scholar
  45. 45.
    Vray B, Hartmann S, Hoebeke J. Immunomodulatory properties of cystatins. Cell Mol life Sci 2002; 59:1503–1512.PubMedCrossRefGoogle Scholar
  46. 46.
    Murray J, Manoury B, Balic A et al. Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Mol Biochem Parasitol 2005; 139:197–203.PubMedCrossRefGoogle Scholar
  47. 47.
    Pfaff AW, Schulz-Key H, Soboslay PT et al. Litomosoides sigmodontis cystatin acts as animmunomodulator during experimental filariasis. Int J Parasitol 2002; 32:171–178.PubMedCrossRefGoogle Scholar
  48. 48.
    Sa-Nunes A, Bafica A, Antonelli LR et al. The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J Immunol 2009; 182:7422–7429.PubMedCrossRefGoogle Scholar
  49. 49.
    Verdot L, Lalmanach G, Vercruysse V et al. Cystatins up-regulate nitric oxide release from interferon-gamma-activated mouse peritoneal macrophages. J Biol Chem 1996; 271:28077–28081.PubMedCrossRefGoogle Scholar
  50. 50.
    Verdot L, Lalmanach G, Vercruysse V et al. Chicken cystatin stimulates nitric oxide release from interferon-gamma-activated mouse peritoneal macrophages via cytokine synthesis. Eur J Biochem 1999; 266:1111–1117.PubMedCrossRefGoogle Scholar
  51. 51.
    Frendeus KH, Wallin H, Janciauskiene S et al. Macrophage responses to interferon-gamma are dependent on cystatin C levels. Int J Biochem Cell Biol 2009; 41:2262–2269.PubMedCrossRefGoogle Scholar
  52. 52.
    Hartmann S, Schonemeyer A, Sonnenburg B et al. Cystatins of filarial nematodes up-regulate the nitric oxide production of interferon-gamma-activated murine macrophages. Parasite Immunol 2002; 24:253–262.PubMedCrossRefGoogle Scholar
  53. 53.
    Hartmann S, Lucius R. Modulation of host immune responses by nematode cystatins. Int J Parasitol 2003; 33:1291–1302.PubMedCrossRefGoogle Scholar
  54. 54.
    Schierack P, Lucius R, Sonnenburg B et al. Parasite-specific immunomodulatory functions of filarial cystatin. Infect Immun 2003; 71:2422–2429.PubMedCrossRefGoogle Scholar
  55. 55.
    Kar S, Ukil A, Das PK. Signaling events leading to the curative effect of cystatin on experimental visceral leishmaniasis: involvement of ERK1/2, NF-kappaB and JAK/STAT pathways. Eur J Immunol 2009; 39:741–751.PubMedCrossRefGoogle Scholar
  56. 56.
    Schnoeller C, Rausch S, Pillai S et al. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J Immunol 2008; 180:4265–4272.PubMedGoogle Scholar
  57. 57.
    Das L, Datta N, Bandyopadhyay S et al. Successful therapy oflethal murine visceral leishmaniasis with cystatin involves up-regulation of nitric oxide and a favorable T-cell response. J Immunol 2001; 166:4020–4028.PubMedGoogle Scholar
  58. 58.
    Mukherjee S, Ukil A, Das PK. Immunomodulatory peptide from cystatin, a natural cysteine protease inhibitor, against leishmaniasis as a model macrophage disease. Antimicrob Agents Chemother 2007; 51:1700–1707.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christian Klotz
    • 1
  • Thomas Ziegler
    • 1
  • Emilia Daniłowicz-Luebert
    • 1
  • Susanne Hartmann
    • 1
  1. 1.Department of Molecular ParasitologyHumboldt University BerlinGermany

Personalised recommendations