Advertisement

Vibration Energy Harvesting and Its Application for Nano- and Microrobotics

  • Junjun Ding
  • Vinod R. Challa
  • M. G. Prasad
  • Frank T. Fisher
Chapter

Abstract

In this chapter, the concept of vibration energy harvesting and its potential utilization as a power source for micro/nanorobots is introduced and discussed. While batteries are commonly used as power sources for electronic devices, the limited lifetime and relatively large dimensional structure of batteries constrain its applications in micro/nanodevices. On the other hand, while capacitors have an extremely compact structure, the power stored is generally considered too low to power micro/nanorobots for a sufficiently long period of time. Hence, energy harvesting approaches, either alone or in conjunction with more traditional power sources, are being investigated to provide sufficient power for micro/nanorobots over the design lifetime of the system. In general, several varieties of energy harvesting techniques and devices have been developed to transfer different energy sources that may be present in a particular environment into electrical power; for example, solar, thermal, mechanical vibration, and even wind energy can be used as the source for energy harvesting devices in appropriate applications. However, specifically considering micro/nanodevices for biomedical applications greatly restricts the potential energy sources that can be harvested for system power. In this case, mechanical (vibration) energy may serve as a useful environmental source for energy harvesting. The purpose of this chapter is to first introduce the reader to the general field of energy harvesting, after which the discussion will focus on mechanical vibration energy harvesting and other techniques with potentially greater application to biomedical nano/microrobotics. In particular, different vibration energy harvesting mechanisms, such as electromagnetic, electrostatic, and piezoelectric techniques, will then be presented. The chapter concludes with recent work being done in the field of nanotechnology to further extend these energy harvesting approaches to size scales compatible with nano/micro devices and systems.

Keywords

Zinc TiO2 Fatigue Nickel SiO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported in part by the National Science Foundation (Award No. CMMI-0846937). The authors would also like to thank Professor David Cappelleri at Stevens for his contribution to this work.

References

  1. 1.
    Steltz E, Seeman M, Avadhanula S, Fearing (2006) RS Power electronics design choice for piezoelectric microrobots. In: IEEE/RSJ international conference on intelligent robots and systems, 9–15 October 2006. pp 1322–1328. doi: 10.1109/IROS.2006.281897
  2. 2.
    Albano F, Chung MD, Blaauw D, Sylvester DM, Wise KD, Sastry AM (2007) Design of an implantable power supply for an intraocular sensor, using POWER (power optimization for wireless energy requirements). J Power Sour 170(1):216–224. doi: 10.1016/j.jpowsour.2007.04.007 CrossRefGoogle Scholar
  3. 3.
    Freitas RA Jr (2005) Current status of nanomedicine and medical nanorobotics. J Comput Theor Nanosci 2:1–25. doi: 10.1166/jctn.2005.001 Google Scholar
  4. 4.
    Köhler U, Kümpers J, Ullrich M (2002) High performance nickel-metal hydride and lithium-ion batteries. J Power Sour 105(2):139–144. doi: 10.1016/s0378-7753(01)00932-6 CrossRefGoogle Scholar
  5. 5.
    Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001. doi: 10.1088/0964-1726/17/4/043001 CrossRefGoogle Scholar
  6. 6.
    Bandhauer TM, Garimella S, Fuller TF (2011) A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 158(3):R1–R25. doi: 10.1149/1.3515880 CrossRefGoogle Scholar
  7. 7.
    Harb JN, LaFollette RM, Selfridge RH, Howell LL (2002) Microbatteries for self-sustained hybrid micropower supplies. J Power Sour 104(1):46–51. doi: 10.1016/s0378-7753(01)00904-1 CrossRefGoogle Scholar
  8. 8.
    Nathan M, Golodnitsky D, Yufit V, Strauss E, Ripenbein T, Shechtman I, Menkin S, Peled E (2005) Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS. J Microelectromech Syst 14(5):879–885. doi: 10.1109/JMEMS.2005.851860 CrossRefGoogle Scholar
  9. 9.
    Peckerar M, Dilli Z, Dornajafi M, Goldsman N, Ngu Y, Proctor RB, Krupsaw BJ, Lowy DA (2011) A novel high energy density flexible galvanic cell. Energy Environ Sci 4(5):1807–1812. doi: 10.1039/C1EE01075A CrossRefGoogle Scholar
  10. 10.
    Dohle H, Mergel J, Stolten D (2002) Heat and power management of a direct-methanol-fuel-cell (DMFC) system. J Power Sour 111(2):268–282. doi: 10.1016/s0378-7753(02)00339-7 CrossRefGoogle Scholar
  11. 11.
    Steinfeld G, Maru HC, Sanderson RA (1996) High efficiency carbonate fuel cell/turbine hybrid power cycle. In: Proceedings of the 31st intersociety energy conversion engineering conference (IECEC 96), 11–16 August 1996. vol 1122, pp 1123–1127. doi: 10.1109/IECEC.1996.553865
  12. 12.
    Heinzel A, Hebling C, Müller M, Zedda M, Müller C (2002) Fuel cells for low power applications. J Power Sour 105(2):250–255. doi: 10.1016/s0378-7753(01)00948-x CrossRefGoogle Scholar
  13. 13.
    Stetten Fv, Kerzenmacher S, Lorenz A, Chokkalingam V, Miyakawa N, Zengerle R, Ducree J (2006) A one-compartment, direct glucose fuel cell for powering long-term medical implants. In: 19th IEEE international conference on micro electro mechanical systems, pp 934–937. doi: 10.1109/memsys.2006.1627954
  14. 14.
    Davis F, Higson SPJ (2007) Biofuel cells—recent advances and applications. Biosens Bioelectron 22(7):1224–1235. doi: 10.1016/j.bios.2006.04.029 CrossRefGoogle Scholar
  15. 15.
    Kerzenmacher S, Ducrée J, Zengerle R, Stetten Fv (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sour 182(1):1–17. doi: 10.1016/j.jpowsour.2008.03.031 Google Scholar
  16. 16.
    Kerzenmacher S, Kräling U, Metz T, Zengerle R, von Stetten F (2011) A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability. J Power Sour 196(3):1264–1272. doi: 10.1016/j.jpowsour.2010.08.019 CrossRefGoogle Scholar
  17. 17.
    Sue C-Y, Tsai N-C (2012) Human powered MEMS-based energy harvest devices. Appl Energy 93:390–403. doi: 10.1016/j.apenergy.2011.12.037 CrossRefGoogle Scholar
  18. 18.
    Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461. doi: 10.1126/science.1158899 CrossRefGoogle Scholar
  19. 19.
    Carmo JP, Goncalves LM, Correia JH (2010) Thermoelectric microconverter for energy harvesting systems. IEEE Trans Industr Electron 57(3):861–867. doi: 10.1109/TIE.2009.2034686 CrossRefGoogle Scholar
  20. 20.
    Bottner H, Nurnus J, Gavrikov A, Kuhner G, Jagle M, Kunzel C, Eberhard D, Plescher G, Schubert A, Schlereth KH (2004) New thermoelectric components using microsystem technologies. J Microelectromech Syst 13(3):414–420. doi: 10.1109/JMEMS.2004.828740 CrossRefGoogle Scholar
  21. 21.
    Massaro A, De Guido S, Ingrosso I, Cingolani R, De Vittorio M, Cori M, Bertacchini A, Larcher L, Passaseo A (2011) Freestanding piezoelectric rings for high efficiency energy harvesting at low frequency. Appl Phys Lett 98(5):053502–053503. doi: 10.1063/1.3551725 CrossRefGoogle Scholar
  22. 22.
    Park JC, Park JY, Lee Y-P (2010) Modeling and characterization of piezoelectric d33-mode MEMS energy harvester. J Microelectromech Syst 19(5):1215–1222. doi: 10.1109/JMEMS.2010.2067431 CrossRefGoogle Scholar
  23. 23.
    Lee BS, Lin SC, Wu WJ (2010) Fabrication and evaluation of a MEMS piezoelectric bimorph generator for vibration energy harvesting. J Mech 26(04):493–499. doi: 10.1017/S172771910000469X CrossRefGoogle Scholar
  24. 24.
    Elfrink R, Kamel TM, Goedbloed M, Matova S, Hohlfeld D, Andel YV, Schaijk RV (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19(9): 094005. doi: 10.1088/0960-1317/19/9/094005
  25. 25.
    Lee BS, Lin SC, Wu WJ, Wang XY, Chang PZ, Lee CK (2009) Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J Micromech Microeng 19(6):065014. doi: 10.1088/0960-1317/19/6/065014 CrossRefGoogle Scholar
  26. 26.
    Shen D, Park J-H, Noh JH, Choe S-Y, Kim S-H, Wikle Iii HC, Kim D-J (2009) Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens Actuators A Phys 154(1): 103–108. doi: 10.1016/j.sna.2009.06.007
  27. 27.
    Shen D, Park J-H, Ajitsaria J, Choe S-Y, III HCW, Kim D-J (2008) The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18(5): 055017. doi: 10.1088/0960-1317/18/5/055017
  28. 28.
    Kim H, Bedekar V, Islam RA, Lee WH, Leo D, Priya S (2008) Laser-machined piezoelectric cantilevers for mechanical energy harvestingenergy harvesting. IEEE Trans Ultrason Ferroelectr Freq Control 55(9):1900. doi: 10.1109/TUFFC.881 CrossRefGoogle Scholar
  29. 29.
    Marzencki M, Ammar Y, Basrour S (2007) Integrated power harvesting system including a MEMS generator and a power management circuit. Sens Actuators A 145–146:363–370. doi: 10.1016/j.sna.2007.10.073 Google Scholar
  30. 30.
    Beeby SP, Torah RN, Tudor MJ, Glynne-Jones P, O’Donnell T, Saha CR, Roy S (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17(7):1257. doi: 10.1088/0960-1317/17/7/007 CrossRefGoogle Scholar
  31. 31.
    Fang H-B, Liu J-Q, Xu Z-Y, Dong L, Wang L, Chen D, Cai B-C, Liu Y (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37(11):1280–1284. doi: 10.1016/j.mejo.2006.07.023 CrossRefGoogle Scholar
  32. 32.
    Jeon YB, Sood R, Jeong Jh, Kim SG (2005b) MEMS power generator with transverse mode thin film PZT. Sens Actuators A 122(1):16–22. doi: 10.1016/j.sna.2004.12.032 CrossRefGoogle Scholar
  33. 33.
    Dutoit NE, Wardle BL, Kim S-G (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr Int J 71(1):121–160. doi: 10.1080/10584580590964574 CrossRefGoogle Scholar
  34. 34.
    Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sens Actuators A 52(1–3):8–11. doi: 10.1016/0924-4247(96)80118-x Google Scholar
  35. 35.
    Glynne-Jones P, Tudor M, Beeby S, White N (2004) An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens Actuators A 110(1–3):344–349. doi: 10.1016/j.sna.2003.09.045 Google Scholar
  36. 36.
    Saha CR, O’Donnell T, Loder H, Beeby S, Tudor J (2006) Optimization of an electromagnetic energy harvesting device. IEEE Trans Magn 42(10):3509–3511. doi: 10.1109/TMAG.2006.879447 CrossRefGoogle Scholar
  37. 37.
    Serre C, Pérez-Rodríguez A, Fondevilla N, Morante JR, Montserrat J, Esteve J (2007) Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators. Microsyst Technol 13(11–12):1655–1661. doi: 10.1007/s00542-006-0338-1 CrossRefGoogle Scholar
  38. 38.
    Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175. doi: 10.1088/0957-0233/17/12/R01 CrossRefGoogle Scholar
  39. 39.
    Roundy S (2005) On the effectiveness of vibration-based energy harvesting. J Intell Mater Syst Struct 16(10):809–823. doi: 10.1177/1045389x05054042 CrossRefGoogle Scholar
  40. 40.
    Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH (2001) Vibration-to-electric energy conversion. IEEE Trans Very Large Scale Integr (VLSI) Syst 9(1): 64–76. doi: 10.1109/92.920820 Google Scholar
  41. 41.
    Roundy S, Wright PK, Pister KSJ (2002) Micro-electrostatic vibration-to-electricity converters. In: ASME 2002 international mechanical engineering congress and exposition (IMECE2002). New Orleans, Louisiana, pp 487–496. doi: 10.1115/IMECE2002-39309
  42. 42.
    Chiu Y, Kuo C-T, Chu Y-S (2007) MEMS design and fabrication of an electrostatic vibration-to-electricity energy converter. Microsyst Technol 13(11):1663–1669. doi: 10.1007/s00542-006-0348-z CrossRefGoogle Scholar
  43. 43.
    Bartsch U, Trautmann A, Ruther P, Gaspar J, Paul O (2007) Electrostatic transducers for micro energy harvesting based on SOI technology. In: Solid-state sensors, actuators and microsystems conference. pp 141–144. doi: 10.1109/SENSOR.2007.4300091
  44. 44.
    Tashiro R, Kabei N, Katayama K, Ishizuka Y, Tsuboi F, Tsuchiya K (2000) Development of an electrostatic generator that harnesses the motion of a living body: use of a resonant phenomenon. JSME Int J Ser C 43(4):916–922CrossRefGoogle Scholar
  45. 45.
    Han J, Von Jouanne A, Le T, Mayaram K, Fiez TS (2004) Novel power conditioning circuits for piezoelectric micro power generators. In: IEEE applied power electronics conference and exposition—APEC. pp 1541–1546. doi: 10.1109/APEC.2004.1296069
  46. 46.
    Ivan IA, Rakotondrabe M, Agnus J, Bourquin R, Chaillet N, Lutz P, Poncot JC, Duffait R, Bauer O (2010) Comparative material study between PZT ceramic and newer crystalline PMN-PT and PZN-PT materials for composite bimorph actuators. Rev Adv Mat Sci 24(1–2):1–9Google Scholar
  47. 47.
    Sun C, Shi J, Bayerl DJ, Wang X (2011) PVDF microbelts for harvesting energy from respiration. Energy Environ Sci 4(11):4508–4512. doi: 10.1039/C1EE02241E CrossRefGoogle Scholar
  48. 48.
    Karami MA, Inman DJ (2012a) Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl Phys Lett 100(4):042901–042904. doi: 10.1063/1.3679102 CrossRefGoogle Scholar
  49. 49.
    Karami MA, Inman DJ (2011) Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting. J Vib Acoust 133(1):011002–011010. doi: 10.1115/1.4002783 CrossRefGoogle Scholar
  50. 50.
    Karami MA, Inman DJ (2012b) Parametric study of zigzag microstructure for vibrational energy harvesting. J Microelectromech Syst 21(1):145–160. doi: 10.1109/JMEMS.2011.2171321 CrossRefGoogle Scholar
  51. 51.
    Ramsay MJ, Clark WW (2001) Piezoelectric energy harvesting for bio-MEMS applications. In: McGowan A-MR (ed) Smart structures and materials 2001: industrial and commercial applications of smart structures technologies SPIE, pp 429–438. doi: 10.1117/12.429684
  52. 52.
    Rocha JG, Goncalves LM, Rocha PF, Silva MP, Lanceros-Mendez S (2010) Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Trans Ind Electron 57(3). doi: 10.1109/TIE.2009.2028360
  53. 53.
    Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–205. doi: 10.1177/0583102404043275 CrossRefGoogle Scholar
  54. 54.
    Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1. doi: 10.1088/0964-1726/16/3/R01 CrossRefGoogle Scholar
  55. 55.
    Gao Y, Wang ZL (2009) Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett 9(3):1103–1110. doi: 10.1021/nl803547f CrossRefGoogle Scholar
  56. 56.
    Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246. doi: 10.1126/science.1124005 CrossRefGoogle Scholar
  57. 57.
    Wang ZL (2008) Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv Funct Mater 18(22):3553–3567. doi: 10.1002/adfm.200800541 CrossRefGoogle Scholar
  58. 58.
    Yang R, Qin Y, Dai L, Wang ZL (2009) Power generation with laterally packaged piezoelectric fine wires. Nat Nanotechnol 4(1):34–39. doi: 10.1038/nnano.2008.314 CrossRefGoogle Scholar
  59. 59.
    Zhu G, Yang R, Wang S, Wang ZL (2010a) Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett 10(8):3151–3155. doi: 10.1021/nl101973h MathSciNetCrossRefGoogle Scholar
  60. 60.
    Yu A, Li H, Tang H, Liu T, Jiang P, Wang ZL (2011) Vertically integrated nanogenerator based on ZnO nanowire arrays. Phys Status Solidi Rapid Res Lett 5(4):162–164. doi: 10.1002/pssr.201105120 CrossRefGoogle Scholar
  61. 61.
    Xu S, Shi Y, Kim S-G (2006) Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology 17(17):4497. doi: 10.1088/0957-4484/17/17/036 CrossRefGoogle Scholar
  62. 62.
    Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Let 10(6):2133–2137. doi: 10.1021/nl100812k Google Scholar
  63. 63.
    Chen X, Xu S, Yao N, Xu W, Shi Y (2009) Potential measurement from a single lead zirconate titanate nanofiber using a nanomanipulator. Appl Phys Lett 94(25):253113–253113. doi: 10.1063/1.3157837 CrossRefGoogle Scholar
  64. 64.
    Li Y, Buddharaju K, Singh N, Lo GQ, Lee SJ (2011) Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology. Electron Device Let 32(5):674–676. doi: 10.1109/LED.2011.2114634 CrossRefGoogle Scholar
  65. 65.
    Zhu D, Tudor MJ, Beeby SP (2010b) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21(2):022001. doi: 10.1088/0957-0233/21/2/022001 CrossRefGoogle Scholar
  66. 66.
    Challa VR, Prasad MG, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17(1):015035. doi: 10.1088/0964-1726/17/01/015035 CrossRefGoogle Scholar
  67. 67.
    Challa VR, Prasad MG, Fisher FT (2011) Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater Struct 20(2):025004. doi: 10.1088/0964-1726/20/2/025004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Junjun Ding
    • 1
  • Vinod R. Challa
    • 1
  • M. G. Prasad
    • 1
  • Frank T. Fisher
    • 1
  1. 1.Department of Mechanical EngineeringStevens Institute of TechnologyHobokenUSA

Personalised recommendations