Advertisement

Narcolepsy pp 227-237 | Cite as

Appetite and Obesity

  • Alice Engel
  • Norbert Dahmen
Chapter

Abstract

Orexin (hypocretin) plays an important role in promoting wakefulness [1]. It stimulates wakefulness when injected in the cerebral ventricles, in the periventricular nucleus, dorsomedial hypothalamus, or lateral hypothalamus [2, 3]. Orexinergic neurons originate from the lateral hypothalamus and have projections to most parts of the central nervous system including the brain stem. The lack of orexin and/or orexin receptors is linked to narcolepsy [4–6].

Keywords

Appetite Obesity Body mass index Orexin Hypocretin Obesity Leptin Ghrelin 

References

  1. 1.
    Sakurai T. Roles of orexins in regulation of feeding and wakefulness. Neuroreport. 2002;13(8):987–95.PubMedCrossRefGoogle Scholar
  2. 2.
    Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A. 1999;96(19):10911–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Dube MG, Kalra SP, Kalra PS. Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res. 1999;842(2):473–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98:365–76.PubMedCrossRefGoogle Scholar
  5. 5.
    Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000;355:39–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Nishino S, Ripley B, Overeem S, Nevsimalova S, Lammers GJ, Vankova J, et al. Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann Neurol. 2001;50:381–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Mullett MA, Billington CJ, Levine AS, Kotz CM. Hypocretin I in the lateral hypothalamus activates key feeding-regulatory brain sites. Neuroreport. 2000;11(1):103–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Siegel JM. Narcolepsy: a key role for hypocretins (orexins). Cell. 1999;98(4):409–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Schuld A, Hebebrand J, Geller F, Pollmächer T. Increased body-mass index in patients with narcolepsy. Lancet. 2000;355(9211):1274–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Dahmen N, Bierbrauer J, Kasten M. Increased prevalence of obesity in narcoleptic patients and relatives. Eur Arch Psychiatry Clin Neurosci. 2001;251:85–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Kok SW, Overeem S, Visscher TL, Lammers GJ, Seidell JC, Pijl H, et al. Hypocretin deficiency in narcoleptic humans is associated with abdominal obesity. Obes Res. 2003;11(9):1147–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Kotagal S, Krahn LE, Slocumb N. A putative link between childhood narcolepsy and obesity. Sleep Med. 2004;5(2):147–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human momologue. Nature. 1994;372:425–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Rauch M, Riediger T, Schmid HA, Simon E. Orexin A activates leptin-responsive neurons in the arcuate nucleus. Pflügers Arch Eur J Physiol. 2000;440:699–703.CrossRefGoogle Scholar
  15. 15.
    Komaki G, Matsumoto Y, Nishikata H, Kawai K, Nozaki T, Takii M, et al. Orexin-A and leptin change inversely in fasting non-obese subjects. Eur J Endocrinol. 2001;144:645–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Schuld A, Blum WF, Uhr M, Haack M, Kraus T, Holsboer F, et al. Reduced leptin levels in human narcolepsy. Neuroendocrinology. 2000;72:195–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Kok SW, Meinders AE, Overeem S, Lammers GJ, Roelfsema F, Frolich M, et al. Reduction of plasma leptin levels and loss of its circadian rhythmicity in hypocretin (orexin)-deficient narcoleptic humans. J Clin Endocrinol Metab. 2002;87:805–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Arnulf I, Lin L, Zhang J, Russell IJ, Ripley B, Einen M, et al. CSF versus serum leptin in narcolepsy: is there an effect of hypocretin deficiency? Sleep. 2006;29(8):1017–24.PubMedGoogle Scholar
  19. 19.
    Dahmen N, Engel A, Helfrich J, Manderscheid N, Löbig M, Forst T, et al. Peripheral leptin levels in narcoleptic patients. Diabetes Technol Ther. 2007;9(4):348–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Fairburn CG, Doll HA, Welch SL, Hay PJ, Davies BA, O’Connor ME. Risk factors for binge eating disorder. Arch Gen Psychiat. 1998;55:425–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Spitzer RL, Yanovski SZ, Wadden T, Wing R. Binge eating disorder: its further validation in a multisite study. Int J Eating Disord. 1993;13:137–53.CrossRefGoogle Scholar
  22. 22.
    Telch CF, Agras WS, Rossiter EM. Binge eating increases with increasing adiposity. Int J Eating Disord. 1988;7:115–9.CrossRefGoogle Scholar
  23. 23.
    Hay P. The epidemiology of eating disorder behaviors: an Australian community-based survey. Int J Eating Disord. 1998;23:371–82.CrossRefGoogle Scholar
  24. 24.
    Hay P, Fairburn C. The validity of the DSM-IV scheme for classifying bulimic eating disorders. Int J Eating Disord. 1998;23:7–15.CrossRefGoogle Scholar
  25. 25.
    Yanovski SZ. Binge eating in obese persons. In: Fairburn CG, Brownell KD, editors. Eating disorders and obesity. 2nd ed. New York: Guilford Press; 2002. p. 403–7.Google Scholar
  26. 26.
    Bell IR. Diet histories in narcolepsy. In: Guilleminault C, Dement WC, Passouant P, editors. Narcolepsy. New York: Spectrum publications, Inc.; 1976. p. 221–7.Google Scholar
  27. 27.
    Pollak CP, Green J. Eating and its relationships with subjective alertness and sleep in narcoleptic subjects living without temporal cues. Sleep. 1990;13(6):467–78.PubMedGoogle Scholar
  28. 28.
    Lammers GJ, Pijl H, Iestra J, Langius JA, Buunk G, Meinders AE. Spontaneous food choice in narcolepsy. Sleep. 1996;19:75–6.PubMedGoogle Scholar
  29. 29.
    Bruck D. Food consumption patterns in narcolepsy. Sleep. 2003;26(Suppl):A272–3.Google Scholar
  30. 30.
    Chabas D, Foulon C, Gonzalez J, Nasr M, Lyon-Caen O, Willer JC, et al. Eating disorder and metabolism in narcoleptic patients. Sleep. 2007;30(10):1267–73.PubMedGoogle Scholar
  31. 31.
    Dahmen N, Becht J, Engel A, Thommes M, Tonn P. Prevalence of eating disorders and eating attacks in narcolepsy. Neuropsychiatr Dis Treat. 2008;4(1):257–61.PubMedGoogle Scholar
  32. 32.
    Droogleever-Fortuyn HA, Swinkels S, Buitelaar J, Renier WO, Furer JW, Rijnders CA, et al. High prevalence of eating disorders in narcolepsy with cataplexy: a case-control study. Sleep. 2008;31(3):335–41.Google Scholar
  33. 33.
    Stunkard AJ, Allison KC, O’Reardon JP. The night eating syndrome: a progress report. Appetite. 2005;45(2):182–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Rand CS, Macgregor AM, Stunkard AJ. The night eating syndrome in the general population and among postoperative obesity surgery patients. Int J Eat Disord. 1997;22(1):65–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Allison KC, Lundgren JD, O’Reardon JP, Martino NS, Sarwer DB, Wadden TA, et al. The Night Eating Questionnaire (NEQ): psychometric properties of a measure of severity of the Night Eating Syndrome. Eat Behav. 2008;9(1):62–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Fronczek R, Overeem S, Reijntjes R, Lammers GJ, van Dijk JG, Pijl H. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy. J Clin Sleep Med. 2008;4:248–54.PubMedGoogle Scholar
  37. 37.
    Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. 1949. Nutrition. 1990;6:213–21.PubMedGoogle Scholar
  38. 38.
    Dahmen N, Tonn P, Messroghli L, Ghezel-Ahmadi D, Engel A. Basal metabolic rate in narcoleptic patients. Sleep. 2009;32(7):962–4.PubMedGoogle Scholar
  39. 39.
    Hara J, Yanagisawa M, Sakurai T. Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci Lett. 2005;380(3):239–42.PubMedCrossRefGoogle Scholar
  40. 40.
    Bruck D, Kennedy GA, Cooper A, Apel S. Diurnal actigraphy and stimulant efficacy in narcolepsy. Hum Psychopharmacol. 2005;20(2):105–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Durrer M, Hess K, Dürsteler M. Narkolepsie und Aktivitätsmonitor. Schweizer Archiv für Neurologie und Psychiatrie. 1991;142:313–8.PubMedGoogle Scholar
  42. 42.
    Middelkoop HA, Lammers GJ, Van Hilten BJ, Ruwhof C, Pijl H, Kamphuisen HA. Circadian distribution of motor activity and immobility in narcolepsy: assessment with continuous motor activity monitoring. Psychophysiology. 1995;32(3):286–91.PubMedCrossRefGoogle Scholar
  43. 43.
    Mayer G, Hellmann F, Leonhard E, Meier-Ewert K. Circadian temperature and activity rhythms in unmedicated narcoleptic patients. Pharmacol Biochem Behav. 1997;58(2):395–402.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PsychiatryUniversity of MainzMainzGermany

Personalised recommendations