Advertisement

Epigenetic Dysregulation of Epstein-Barr Virus Latency and Development of Autoimmune Disease

  • Hans Helmut Niller
  • Hans Wolf
  • Eva Ay
  • Janos Minarovits
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 711)

Abstract

Epstein-Barr virus (EBV) is a human herpesvirus that persists in the memory B-cells of the majority of the world population in a latent form. Primary EBV infection is asymptomatic or causes a self-limiting disease, infectious mononucleosis. Virus latency is associated with a wide variety of neoplasms whereof some occur in immune suppressed individuals. Virus production does not occur in strict latency. The expression of latent viral oncoproteins and nontranslated RNAs is under epigenetic control via DNA methylation and histone modifications that results either in a complete silencing of the EBV genome in memory B cells, or in a cell-type dependent usage of a couple of latency promoters in tumor cells, germinal center B cells and lymphoblastoid cells (LCL, transformed by EBV in vitro). Both, latent and lytic EBV proteins elicit a strong immune response. In immune suppressed and infectious mononucleosis patients, an increased viral load can be detected in the blood. Enhanced lytic replication may result in new infection? and transformation-events and thus is a risk factor both for malignant transformation and the development of autoimmune diseases. An increased viral load or a changed presentation of a subset of lytic or latent EBV proteins that cross-react with cellular antigens may trigger pathogenic processes through molecular mimicry that result in multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA).

Keywords

Rheumatoid Arthritis Multiple Sclerosis Systemic Lupus Erythematosus Barr Virus Latent Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res 2004; 10:803–821.PubMedCrossRefGoogle Scholar
  2. 2.
    Niller HH, Wolf H, Minarovits J. Epstein-Barr Virus. In: Minarovits J, Gonczol E, Valyi-Nagy T, eds. Latency Strategies of Herpesviruses. New York: Springer, 2007:154–191.CrossRefGoogle Scholar
  3. 3.
    Niller HH, Wolf H, Minarovits J. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases. Autoimmunity 2008; 41:298–328.PubMedCrossRefGoogle Scholar
  4. 4.
    Hadinoto V, Shapiro M, Sun CC et al. The dynamics of EBV shedding implicate a central role for epithelial cells in amplifying viral output. PLoS Pathog 2009; 5:e1000496.Google Scholar
  5. 5.
    Crawford DH. Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 2001; 356:461–473.PubMedCrossRefGoogle Scholar
  6. 6.
    Hochberg D, Souza T, Catalina M et al. Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J Virol 2004; 78:5194–5204.PubMedCrossRefGoogle Scholar
  7. 7.
    Tierney RJ, Steven N, Young LS et al. Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol 1994; 68:7374–7385.PubMedGoogle Scholar
  8. 8.
    Tosato G, Magrath I, Koski I et al. Activation of suppressor T-cells during Epstein-Barr-virus-induced infectious mononucleosis. N Engl J Med 1979; 301:1133–1137.PubMedCrossRefGoogle Scholar
  9. 9.
    Moss DJ, Burrows SR, Silins SL et al. The immunology of Epstein-Barr virus infection. Philos Trans R Soc Lond B Biol Sci 2001; 356:475–488.PubMedCrossRefGoogle Scholar
  10. 10.
    Silins SL, Sherritt MA, Silleri JM et al. Asymptomatic primary Epstein-Barr virus infection occurs in the absence of blood T-cell repertoire perturbations despite high levels of systemic viral load. Blood 2001; 98:3739–3744.PubMedCrossRefGoogle Scholar
  11. 11.
    Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 2004; 350:1328–1337.PubMedCrossRefGoogle Scholar
  12. 12.
    Souza TA, Stollar BD, Sullivan JL et al. Peripheral B-cells latently infected with Epstein-Barr virus display molecular hallmarks of classical antigen-selected memory B-cells. Proc Natl Acad Sci USA 2005; 102:18093–18098.PubMedCrossRefGoogle Scholar
  13. 13.
    Kurth J, Spieker T, Wustrow J et al. EBV-infected B-cells in infectious mononucleosis: viral strategies for spreading in the B-cell compartment and establishing latency. Immunity 2000; 13:485–495.PubMedCrossRefGoogle Scholar
  14. 14.
    Kurth J, Hansmann ML, Rajewsky K et al. Epstein-Barr virus-infected B-cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc Natl Acad Sci USA 2003; 100:4730–4735.PubMedCrossRefGoogle Scholar
  15. 15.
    Roughan JE, Thorley-Lawson DA. The intersection of Epstein-Barr virus with the germinal center. J Virol 2009; 83:3968–3976.PubMedCrossRefGoogle Scholar
  16. 16.
    Roughan JE, Torgbor C, Thorley-Lawson DA. Germinal center B-cells latently infected with Epstein-Barr virus proliferate extensively but do not increase in number. J Virol 2010; 84:1158–1168.PubMedCrossRefGoogle Scholar
  17. 17.
    Ehlin-Henriksson B, Gordon J, Klein G. B-lymphocyte subpopulations are equally susceptible to Epstein-Barr virus infection, irrespective of immunoglobulin isotype expression. Immunology 2003; 108:427–430.PubMedCrossRefGoogle Scholar
  18. 18.
    Uchida J, Yasui T, Takaoka-Shichijo Y et al. Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 1999; 286:300–303.PubMedCrossRefGoogle Scholar
  19. 19.
    Lenoir GM, Bornkamm G. Burkitt’s Lymphoma, a human cancer model for the study of the multistep dvelopment of cancer: proposal for a new scenario. In: Klein G, ed. Advances in Viral Oncology. New York: Raven Press, 1 1987:173–206.Google Scholar
  20. 20.
    Araujo I, Foss HD, Hummel M et al. Frequent expansion of Epstein-Barr virus (EBV) infected cells in germinal centres of tonsils from an area with a high incidence of EBV-associated lymphoma. J Pathol 1999; 187:326–330.PubMedCrossRefGoogle Scholar
  21. 21.
    Niller HH, Salamon D, Ilg K et al. EBV-associated neoplasms: alternative pathogenetic pathways. Med Hypotheses 2004; 62:387–391.PubMedCrossRefGoogle Scholar
  22. 22.
    Marschall M, Leser U, Seibl R et al. Identification of proteins encoded by Epstein-Barr virus trans-activator genes. J Virol 1989; 63:938–942.PubMedGoogle Scholar
  23. 23.
    Sinclair AJ, Brimmell M, Shanahan F et al. Pathways of activation of the Epstein-Barr virus productive cycle. J Virol 1991; 65:2237–2244.PubMedGoogle Scholar
  24. 24.
    Niller HH, Salamon D, Banati F et al. The LCR of EBV makes Burkitt’s lymphoma endemic. Trends Microbiol 2004; 12:495–499.PubMedCrossRefGoogle Scholar
  25. 25.
    Pfeffer S, Zavolan M, Grasser FA et al. Identification of virus-encoded microRNAs. Science 2004; 304:734–736.PubMedCrossRefGoogle Scholar
  26. 26.
    Cai X, Schafer A, Lu S et al. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2006; 2:e23.PubMedCrossRefGoogle Scholar
  27. 27.
    Grundhoff A, Sullivan CS, Ganem D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 2006; 12:733–750.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhu JY, Pfuhl T, Motsch N et al. Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J Virol 2009; 83:3333–3341.PubMedCrossRefGoogle Scholar
  29. 29.
    Honess RW, Gompels UA, Barrell BG et al. Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. J Gen Virol 1989; 70(Pt 4):837–855.PubMedCrossRefGoogle Scholar
  30. 30.
    Robertson KD, Ambinder RF. Methylation of the Epstein-Barr virus genome in normal lymphocytes. Blood 1997; 90:4480–4484.PubMedGoogle Scholar
  31. 31.
    Paulson EJ, Speck SH. Differential methylation of Epstein-Barr virus latency promoters facilitates viral persistence in healthy seropositive individuals. J Virol 1999; 73:9959–9968.PubMedGoogle Scholar
  32. 32.
    Minarovits J, Minarovits-Kormuta S, Ehlin-Henriksson B et al. Host cell phenotype-dependent methylation patterns of Epstein-Barr virus DNA. J Gen Virol 1991; 72:1591–1599.PubMedCrossRefGoogle Scholar
  33. 33.
    Li H, Minarovits J. Host cell-dependent expression of latent Epstein-Barr virus genomes: regulation by DNA methylation. Adv Cancer Res 2003; 89:133–156.PubMedCrossRefGoogle Scholar
  34. 34.
    Minarovits J. Epigenotypes of latent herpesvirus genomes. Curr Top Microbiol Immunol 2006; 310:61–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Ernberg I, Falk K, Minarovits J et al. The role of methylation in the phenotype-dependent modulation of Epstein-Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein-Barr virus. J Gen Virol 1989; 70:2989–3002.PubMedCrossRefGoogle Scholar
  36. 36.
    Minarovits J, Hu LF, Marcsek Z et al. RNA polymerase III-transcribed EBER 1 and 2 transcription units are expressed and hypomethylated in the major Epstein-Barr virus-carrying cell types. J Gen Virol 1992; 73:1687–1692.PubMedCrossRefGoogle Scholar
  37. 37.
    Altiok E, Minarovits J, Hu LF et al. Host-cell-phenotype-dependent control of the BCR2/BWR1 promoter complex regulates the expression of Epstein-Barr virus nuclear antigens 2–6. Proc Natl Acad Sci USA 1992; 89:905–909.PubMedCrossRefGoogle Scholar
  38. 38.
    Arrand JR, Rymo L. Characterization of the major Epstein-Barr virus-specific RNA in Burkitt lymphoma-derived cells. J Virol 1982; 41:376–389.PubMedGoogle Scholar
  39. 39.
    Felton-Edkins ZA, Kondrashov A, Karali D et al. Epstein-Barr virus induces cellular transcription factors to allow active expression of EBER genes by RNA polymerase III. J Biol Chem 2006; 281:33871–33880.PubMedCrossRefGoogle Scholar
  40. 40.
    Lerner MR, Andrews NC, Miller G et al. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 1981; 78:805–809.PubMedCrossRefGoogle Scholar
  41. 41.
    Toczyski DP, Matera AG, Ward DC et al. The Epstein-Barr virus (EBV) small RNA EBER1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc Natl Acad Sci USA 1994; 91:3463–3467.PubMedCrossRefGoogle Scholar
  42. 42.
    Clarke PA, Schwemmle M, Schickinger J et al. Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nucleic Acids Res 1991; 19:243–248.PubMedCrossRefGoogle Scholar
  43. 43.
    Elia A, Vyas J, Laing KG et al. Ribosomal protein L22 inhibits regulation of cellular activities by the Epstein-Barr virus small RNA EBER-1. Eur J Biochem 2004; 271:1895–1905.PubMedCrossRefGoogle Scholar
  44. 44.
    Komano J, Maruo S, Kurozumi K et al. Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt’s lymphoma cell line Akata. J Virol 1999; 73:9827–9831.PubMedGoogle Scholar
  45. 45.
    Ruf IK, Rhyne PW, Yang C et al. Epstein-Barr virus small RNAs potentiate tumorigenicity of Burkitt lymphoma cells independently of an effect on apoptosis. J Virol 2000; 74:10223–10228.PubMedCrossRefGoogle Scholar
  46. 46.
    Ruf IK, Lackey KA, Warudkar S et al. Protection from interferon-induced apoptosis by epstein-barr virus small RNAs is not mediated by inhibition of PKR. J Virol 2005; 79:14562–14569.PubMedCrossRefGoogle Scholar
  47. 47.
    Clemens MJ. Epstein-Barr virus: inhibition of apoptosis as a mechanism of cell transformation. Int J Biochem Cell Biol 2006; 38:164–169.PubMedCrossRefGoogle Scholar
  48. 48.
    Iwakiri D, Zhou L, Samanta M et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med 2009; 206:2091–2099.PubMedCrossRefGoogle Scholar
  49. 49.
    Sugden B, Warren N. A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J Virol 1989; 63:2644–2649.PubMedGoogle Scholar
  50. 50.
    Jankelevich S, Kolman JL, Bodnar JW et al. A nuclear matrix attachment region organizes the Epstein-Barr viral plasmid in Raji cells into a single DNA domain. EMBO J 1992; 11:1165–1176.PubMedGoogle Scholar
  51. 51.
    Middleton T, Sugden B. Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein-Barr virus replication protein EBNA1. J Virol 1994; 68:4067–4071.PubMedGoogle Scholar
  52. 52.
    White RE, Wade-Martins R, James MR. Sequences adjacent to oriP improve the persistence of Epstein-Barr virus-based episomes in B-cells. J Virol 2001; 75:11249–11252.PubMedCrossRefGoogle Scholar
  53. 53.
    Wensing B, Stuhler A, Jenkins P et al. Variant chromatin structure of the oriP region of Epstein-Barr virus and regulation of EBER1 expression by upstream sequences and oriP. J Virol 2001; 75:6235–6241.PubMedCrossRefGoogle Scholar
  54. 54.
    Levitskaya J, Sharipo A, Leonchiks A et al. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 1997; 94:12616–12621.PubMedCrossRefGoogle Scholar
  55. 55.
    Munz C. Epstein-barr virus nuclear antigen 1: from immunologically invisible to a promising T-cell target. J Exp Med 2004; 199:1301–1304.PubMedCrossRefGoogle Scholar
  56. 56.
    Lunemann JD, Edwards N, Muraro PA et al. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T-cells in multiple sclerosis. Brain 2006; 129:1493–1506.PubMedCrossRefGoogle Scholar
  57. 57.
    Rabson M, Gradoville L, Heston L et al. Non-immortalizing P3J-HR-1 Epstein-Barr virus: a deletion mutant of its transforming parent, Jijoye. J Virol 1982; 44:834–844.PubMedGoogle Scholar
  58. 58.
    Hammerschmidt W, Sugden B. Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature 1989; 340:393–397.PubMedCrossRefGoogle Scholar
  59. 59.
    Ling PD, Rawlins DR, Hayward SD. The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci USA 1993; 90:9237–9241.PubMedCrossRefGoogle Scholar
  60. 60.
    Cordier M, Calender A, Billaud M et al. Stable transfection of Epstein-Barr virus (EBV) nuclear antigen 2 in lymphoma cells containing the EBV P3HR1 genome induces expression of B-cell activation molecules CD21 and CD23. J Virol 1990; 64:1002–1013.PubMedGoogle Scholar
  61. 61.
    Wang F, Tsang SF, Kurilla MG et al. Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol 1990; 64:3407–3416.PubMedGoogle Scholar
  62. 62.
    Mannick JB, Cohen JI, Birkenbach M et al. The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol 1991; 65:6826–6837.PubMedGoogle Scholar
  63. 63.
    Harada S, Kieff E. Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol 1997; 71:6611–6618.PubMedGoogle Scholar
  64. 64.
    Nitsche F, Bell A, Rickinson A. Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol 1997; 71:6619–6628.PubMedGoogle Scholar
  65. 65.
    Tomkinson B, Robertson E, Kieff E. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 1993; 67:2014–2025.PubMedGoogle Scholar
  66. 66.
    Tomkinson B, Kieff E. Use of second-site homologous recombination to demonstrate that Epstein-Barr virus nuclear protein 3B is not important for lymphocyte infection or growth transformation in vitro. J Virol 1992; 66:2893–2903.PubMedGoogle Scholar
  67. 67.
    Waltzer L, Perricaudet M, Sergeant A et al. Epstein-Barr virus EBNA3A and EBNA3C proteins both repress RBP-J kappa-EBNA2-activated transcription by inhibiting the binding of RBP-J kappa to DNA. J Virol 1996; 70:5909–5915.PubMedGoogle Scholar
  68. 68.
    Robertson ES, Lin J, Kieff E. The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B and 3C interact with RBPJ(kappa). J Virol 1996; 70:3068–3074.PubMedGoogle Scholar
  69. 69.
    Chen A, Zhao B, Kieff E et al. EBNA-3B-and EBNA-3C-regulated cellular genes in Epstein-Barr virus-immortalized lymphoblastoid cell lines. J Virol 2006; 80:10139–10150.PubMedCrossRefGoogle Scholar
  70. 70.
    Smith P. Epstein-Barr virus complementary strand transcripts (CSTs/BARTs) and cancer. Semin Cancer Biol 2001; 11:469–476.PubMedCrossRefGoogle Scholar
  71. 71.
    Al Mozaini M, Bodelon G, Karstegl CE et al. Epstein-Barr virus BART gene expression. J Gen Virol 2009; 90:307–316.CrossRefGoogle Scholar
  72. 72.
    Sadler RH, Raab-Traub N. Structural analyses of the Epstein-Barr virus BamHI A transcripts. J Virol 1995; 69:1132–1141.PubMedGoogle Scholar
  73. 73.
    de Jesus O, Smith PR, Spender LC et al. Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J Gen Virol 2003; 84:1443–1450.PubMedCrossRefGoogle Scholar
  74. 74.
    He B, Raab-Traub N, Casali P et al. EBV-encoded latent membrane protein 1 choperates with BAF/BLyS and APRIL to induce T-cell-independent Ig heavy chain class switching. J Immunol 2003; 171:5215–5224.PubMedGoogle Scholar
  75. 75.
    Laux G, Dugrillon F, Eckert C et al. Identification and characterization of an Epstein-Barr virus nuclear antigen 2-responsive cis element in the bidirectional promoter region of latent membrane protein and terminal protein 2 genes. J Virol 1994; 68:6947–6958.PubMedGoogle Scholar
  76. 76.
    Sadler RH, Raab-Traub N. The Epstein-Barr virus 3.5-kilobase latent membrane protein 1 mRNA initiates from a TATA-less promoter within the first terminal repeat. J Virol 1995; 69:4577–4581.PubMedGoogle Scholar
  77. 77.
    Fennewald S, van Santen V, Kieff E. Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. J Virol 1984; 51:411–419.PubMedGoogle Scholar
  78. 78.
    Rechsteiner MP, Berger C, Weber M et al. Silencing of latent membrane protein 2B reduces susceptibility to activation of lytic Epstein-Barr virus in Burkitt’s lymphoma Akata cells. J Gen Virol 2007; 88:1454–1459.PubMedCrossRefGoogle Scholar
  79. 79.
    Rechsteiner MP, Berger C, Zauner L et al. Latent membrane protein 2B regulates susceptibility to induction of lytic Epstein-Barr virus infection. J Virol 2008; 82:1739–1747.PubMedCrossRefGoogle Scholar
  80. 80.
    Swanson-Mungerson M, Longnecker R. Epstein-Barr virus latent membrane protein 2A and autoimmunity. Trends Immunol 2007; 28:213–218.PubMedCrossRefGoogle Scholar
  81. 81.
    Tsai CL, Li HP, Lu YJ et al. Activation of DNA methyltransferase 1 by EBV LMP1 Involves c-Jun NH(2)-terminal kinase signaling. Cancer Res 2006; 66:11668–11676.PubMedCrossRefGoogle Scholar
  82. 82.
    Hino R, Uozaki H, Murakami N et al. Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res 2009; 69:2766–2774.PubMedCrossRefGoogle Scholar
  83. 83.
    Xia T, O’Hara A, Araujo I et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res 2008; 68:1436–1442.PubMedCrossRefGoogle Scholar
  84. 84.
    Lung RW, Tong JH, Sung YM et al. Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia 2009; 11:1174–1184.PubMedGoogle Scholar
  85. 85.
    Lo AK, To KF, Lo KW et al. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA 2007; 104:16164–16169.PubMedCrossRefGoogle Scholar
  86. 86.
    Barth S, Pfuhl T, Mamiani A et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res 2008; 36:666–675.PubMedCrossRefGoogle Scholar
  87. 87.
    Choy EY, Siu KL, Kok KH et al. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med 2008; 205:2551–2560.PubMedCrossRefGoogle Scholar
  88. 88.
    Nachmani D, Stern-Ginossar N, Sarid R et al. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 2009; 5:376–385.PubMedCrossRefGoogle Scholar
  89. 89.
    Niller HH, Wolf H, Minarovits J. Epigenetic dysregulation of the host cell genome in Epstein-Barr virus-associated neoplasia. Semin Cancer Biol 2009; 19:158–164.PubMedCrossRefGoogle Scholar
  90. 90.
    Lunemann JD, Munz C. EBV in MS: guilty by association? Trends Immunol 2009; 30:243–248.PubMedCrossRefGoogle Scholar
  91. 91.
    Pender MP. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 2003; 24:584–588.PubMedCrossRefGoogle Scholar
  92. 92.
    Wong M, Tsao BP. Current topics in human SLE genetics. Springer Semin Immunopathol 2006; 28:97–107.PubMedCrossRefGoogle Scholar
  93. 93.
    Hewagama A, Richardson B. The genetics and epigenetics of autoimmune diseases. J Autoimmun 2009; 33:3–11.PubMedCrossRefGoogle Scholar
  94. 94.
    Brooks WH, Le Dantec C, Pers JO et al. Epigenetics and autoimmunity. J Autoimmun 2010.Google Scholar
  95. 95.
    Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 2007; 61:288–299.PubMedCrossRefGoogle Scholar
  96. 96.
    Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Ann Neurol 2007.Google Scholar
  97. 97.
    Poser CM. Notes on the pathogenesis of multiple sclerosis. Clin Neurosci 1994; 2:258–265.PubMedGoogle Scholar
  98. 98.
    Sutkowski N, Conrad B, Thorley-Lawson DA et al. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 2001; 15:579–589.PubMedCrossRefGoogle Scholar
  99. 99.
    Tai AK, O’Reilly EJ, Alroy KA et al. Human endogenous retrovirus-K18 Env as a risk factor in multiple sclerosis. Mult Scler 2008; 14:1175–1180.PubMedCrossRefGoogle Scholar
  100. 100.
    Christensen T. Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses. Rev Med Virol 2005; 15:179–211.PubMedCrossRefGoogle Scholar
  101. 101.
    Antony JM, van Marle G, Opii W et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 2004; 7:1088–1095.PubMedCrossRefGoogle Scholar
  102. 102.
    Alotaibi S, Kennedy J, Tellier R et al. Epstein-Barr virus in pediatric multiple sclerosis. JAMA 2004; 291:1875–1879.PubMedCrossRefGoogle Scholar
  103. 103.
    Pohl D, Krone B, Rostasy K et al. High seroprevalence of Epstein-Barr virus in children with multiple sclerosis. Neurology 2006; 67:2063–2065.PubMedCrossRefGoogle Scholar
  104. 104.
    Haahr S, Hollsberg P. Multiple sclerosis is linked to Epstein-Barr virus infection. Rev Med Virol 2006; 16:297–310.PubMedCrossRefGoogle Scholar
  105. 105.
    Nielsen TR, Rostgaard K, Nielsen NM et al. Multiple sclerosis after infectious mononucleosis. Arch Neurol 2007; 64:72–75.PubMedCrossRefGoogle Scholar
  106. 106.
    Rolls AE, Giovannoni G, Constantinescu CS et al. Multiple Sclerosis, Lymphoma and Nasopharyngeal Carcinoma: The Central Role of Epstein-Barr Virus? Eur Neurol 2009; 63:29–35.PubMedCrossRefGoogle Scholar
  107. 107.
    DeLorenze GN, Munger KL, Lennette ET et al. Epstein-Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch Neurol 2006; 63:839–844.PubMedCrossRefGoogle Scholar
  108. 108.
    Nielsen TR, Pedersen M, Rostgaard K et al. Correlations between Epstein-Barr virus antibody levels and risk factors for multiple sclerosis in healthy individuals. Mult Scler 2007; 13:420–423.PubMedCrossRefGoogle Scholar
  109. 109.
    Sundstrom P, Juto P, Wadell G et al. An altered immune response to Epstein-Barr virus in multiple sclerosis: a prospective study. Neurology 2004; 62:2277–2282.PubMedCrossRefGoogle Scholar
  110. 110.
    Bray PF, Luka J, Bray PF et al. Antibodies against Epstein-Barr nuclear antigen (EBNA) in multiple sclerosis CSF and two pentapeptide sequence identities between EBNA and myelin basic protein. Neurology 1992; 42:1798–1804.PubMedCrossRefGoogle Scholar
  111. 111.
    Cepok S, Zhou D, Srivastava R et al. Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 2005; 115:1352–1360.PubMedGoogle Scholar
  112. 112.
    Wucherpfennig KW, Strominger JL. Molecular mimicry in T-cell-mediated autoimmunity: viral peptides activate human T-cell clones specific for myelin basic protein. Cell 1995; 80:695–705.PubMedCrossRefGoogle Scholar
  113. 113.
    Lang HL, Jacobsen H, Ikemizu S et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 2002; 3:940–943.PubMedCrossRefGoogle Scholar
  114. 114.
    Holmoy T, Vartdal F. Cerebrospinal fluid T-cells from multiple sclerosis patients recognize autologous Epstein-Barr virus-transformed B-cells. J Neurovirol 2004; 10:52–56.PubMedCrossRefGoogle Scholar
  115. 115.
    Holmoy T, Kvale EO, Vartdal F. Cerebrospinal fluid CD4+ T-cells from a multiple sclerosis patient cross-recognize Epstein-Barr virus and myelin basic protein. J Neurovirol 2004; 10:278–283.PubMedCrossRefGoogle Scholar
  116. 116.
    Gronen F, Ruprecht K, Weissbrich B et al. Frequency analysis of HLA-B7-restricted Epstein-Barr virus-specific cytotoxic T-lymphocytes in patients with multiple sclerosis and healthy controls. J Neuroimmunol 2006; 180:185–192.PubMedCrossRefGoogle Scholar
  117. 117.
    Serafini B, Rosicarelli B, Franciotta D et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 2007; 204:2899–2912.PubMedCrossRefGoogle Scholar
  118. 118.
    Ascherio A. Epstein-Barr virus in the development of multiple sclerosis. Expert Rev Neurother 2008; 8:331–333.PubMedCrossRefGoogle Scholar
  119. 119.
    Franciotta D, Salvetti M, Lolli F et al. B-cells and multiple sclerosis. Lancet Neurol 2008; 7:852–858.PubMedCrossRefGoogle Scholar
  120. 120.
    Salvetti M, Giovannoni G, Aloisi F. Epstein-Barr virus and multiple sclerosis. Curr Opin Neurol 2009; 22:201–206.PubMedCrossRefGoogle Scholar
  121. 121.
    Willis SN, Stadelmann C, Rodig SJ et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 2009; 132:3318–3328.PubMedCrossRefGoogle Scholar
  122. 122.
    Peferoen LA, Lamers F, Lodder LN et al. Epstein Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 2009.Google Scholar
  123. 123.
    Torkildsen O, Stansberg C, Angelskar SM et al. Upregulation of immunoglobulin-related genes in cortical sections from multiple sclerosis patients. Brain Pathol 2009.Google Scholar
  124. 124.
    Sawalha AH, Webb R, Han S et al. Common variants within MECP2 confer risk of systemic lupus erythematosus. PLoS ONE 2008; 3:e1727.PubMedCrossRefGoogle Scholar
  125. 125.
    Sawalha AH, Jeffries M, Webb R et al. Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients. Genes Immun 2008; 9:368–378.PubMedCrossRefGoogle Scholar
  126. 126.
    Xiao C, Srinivasan L, Calado DP et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008; 9:405–414.PubMedCrossRefGoogle Scholar
  127. 127.
    Paschos K, Smith P, Anderton E et al. Epstein-barr virus latency in B-cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim PLoS Pathog 2009; 5:e1000492.CrossRefGoogle Scholar
  128. 128.
    Harley JB, Harley IT, Guthridge JM et al. The curiously suspicious: a role for Epstein-Barr virus in lupus. Lupus 2006; 15:768–777.PubMedCrossRefGoogle Scholar
  129. 129.
    James JA, Harley JB, Scofield RH. Epstein-Barr virus and systemic lupus erythematosus. Curr Opin Rheumatol 2006; 18:462–467.PubMedCrossRefGoogle Scholar
  130. 130.
    James JA, Neas BR, Moser KL et al. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum 2001; 44:1122–1126.PubMedCrossRefGoogle Scholar
  131. 131.
    James JA, Kaufman KM, Farris AD et al. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 1997; 100:3019–3026.PubMedCrossRefGoogle Scholar
  132. 132.
    McClain MT, Heinlen LD, Dennis GJ et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med 2005; 11:85–89.PubMedCrossRefGoogle Scholar
  133. 133.
    James JA, Gross T, Scofield RH et al. Immunoglobulin epitope spreading and autoimmune disease after peptide immunization: Sm B/B’-derived PPPGMRPP and PPPGIRGP induce spliceosome autoimmunity. J Exp Med 1995; 181:453–461.PubMedCrossRefGoogle Scholar
  134. 134.
    Arbuckle MR, Reichlin M, Harley JB et al. Shared early autoantibody recognition events in the development of anti-Sm B/B’ in human lupus. Scand J Immunol 1999; 50:447–455.PubMedCrossRefGoogle Scholar
  135. 135.
    James JA, Harley JB. A model of peptide-induced lupus autoimmune B-cell epitope spreading is strain specific and is not H-2 restricted in mice. J Immunol 1998; 160:502–508.PubMedGoogle Scholar
  136. 136.
    Arbuckle MR, Gross T, Scofield RH et al. Lupus humoral autoimmunity induced in a primate model by short peptide immunization. J Investig Med 1998; 46:58–65.PubMedGoogle Scholar
  137. 137.
    James JA, Harley JB. Linear epitope mapping of an Sm B/B’ polypeptide. J Immunol 1992; 148:2074–2079.PubMedGoogle Scholar
  138. 138.
    McClain MT, Poole BD, Bruner BF et al. An altered immune response to Epstein-Barr nuclear antigen 1 in pediatric systemic lupus erythematosus. Arthritis Rheum 2006; 54:360–368.PubMedCrossRefGoogle Scholar
  139. 139.
    James JA, Scofield RH, Harley JB. Lupus humoral autoimmunity after short peptide immunization. Ann NY Acad Sci 1997; 815:124–127.PubMedCrossRefGoogle Scholar
  140. 140.
    Sundar K, Jacques S, Gottlieb P et al. Expression of the Epstein-Barr virus nuclear antigen-1 (EBNA-1) in the mouse can elicit the production of anti-dsDNA and anti-Sm antibodies. J Autoimmun 2004; 23:127–140.PubMedCrossRefGoogle Scholar
  141. 141.
    Kaufman KM, Kirby MY, Harley JB et al. Peptide mimics of a major lupus epitope of SmB/B’. Ann NY Acad Sci 2003; 987:215–229.PubMedCrossRefGoogle Scholar
  142. 142.
    Incaprera M, Rindi L, Bazzichi A et al. Potential role of the Epstein-Barr virus in systemic lupus erythematosus autoimmunity. Clin Exp Rheumatol 1998; 16:289–294.PubMedGoogle Scholar
  143. 143.
    Sabbatini A, Bombardieri S, Migliorini P. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclear antigen EBNA I. Eur J Immunol 1993; 23:1146–1152.PubMedCrossRefGoogle Scholar
  144. 144.
    Yamazaki M, Kitamura R, Kusano S et al. Elevated immunoglobulin G antibodies to the proline-rich amino-terminal region of Epstein-Barr virus nuclear antigen-2 in sera from patients with systemic connective tissue diseases and from a subgroup of Sjogren’s syndrome patients with pulmonary involvements. Clin Exp Immunol 2005; 139:558–568.PubMedCrossRefGoogle Scholar
  145. 145.
    Yu SF, Wu HC, Tsai WC et al. Detecting Epstein-Barr virus DNA from peripheral blood mononuclear cells in adult patients with systemic lupus erythematosus in Taiwan. Med Microbiol Immunol 2005; 194:115–120.PubMedCrossRefGoogle Scholar
  146. 146.
    Moon UY, Park SJ, Oh ST et al. Patients with systemic lupus erythematosus have abnormally elevated Epstein-Barr virus load in blood. Arthritis Res Ther 2004; 6:R295–R302.PubMedCrossRefGoogle Scholar
  147. 147.
    Kang I, Quan T, Nolasco H et al. Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus. J Immunol 2004; 172:1287–1294.PubMedGoogle Scholar
  148. 148.
    Gross AJ, Hochberg D, Rand WM et al. EBV and systemic lupus erythematosus: a new perspective. J Immunol 2005; 174:6599–6607.PubMedGoogle Scholar
  149. 149.
    Tsokos GC, Magrath IT, Balow JE. Epstein-Barr virus induces normal B-cell responses but defective suppressor T-cell responses in patients with systemic lupus erythematosus. J Immunol 1983; 131:1797–1801.PubMedGoogle Scholar
  150. 150.
    Berner BR, Tary-Lehmann M, Yonkers NL et al. Phenotypic and functional analysis of EBV-specific memory CD8 cells in SLE. Cell Immunol 2005; 235:29–38.PubMedCrossRefGoogle Scholar
  151. 151.
    Yurasov S, Wardemann H, Hammersen J et al. Defective B-cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med 2005; 201:703–711.PubMedCrossRefGoogle Scholar
  152. 152.
    Wakabayashi C, Adachi T, Wienands J et al. A distinct signaling pathway used by the IgG-containing B-cell antigen receptor. Science 2002; 298:2392–2395.PubMedCrossRefGoogle Scholar
  153. 153.
    Costenbader KH, Karlson EW. Epstein-Barr virus and rheumatoid arthritis: is there a link? Arthritis Res Ther 2006; 8:204.PubMedCrossRefGoogle Scholar
  154. 154.
    Sawada S, Takei M, Inomata H et al. What is after cytokine-blocking therapy, a novel therapeutic target-synovial Epstein-Barr virus for rheumatoid arthritis. Autoimmun Rev 2007; 6:126–130.PubMedCrossRefGoogle Scholar
  155. 155.
    Oliver JE, Silman AJ. Risk factors for the development of rheumatoid arthritis. Scand J Rheumatol 2006; 35:169–174.PubMedCrossRefGoogle Scholar
  156. 156.
    Sanchez-Pernaute O, Ospelt C, Neidhart M et al. Epigenetic clues to rheumatoid arthritis. J Autoimmun 2008; 30:12–20.PubMedCrossRefGoogle Scholar
  157. 157.
    Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med 1978; 298:869–871.PubMedCrossRefGoogle Scholar
  158. 158.
    Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987; 30:1205–1213.PubMedCrossRefGoogle Scholar
  159. 159.
    Jilg W, Bogedain C, Mairhofer H et al. The Epstein-Barr virus-encoded glycoprotein gp 110 (BALF 4) can serve as a target for antibody-dependent cell-mediated cytotoxicity (ADCC). Virology 1994; 202:974–977.PubMedCrossRefGoogle Scholar
  160. 160.
    Saal JG, Krimmel M, Steidle M et al. Synovial Epstein-Barr virus infection increases the risk of rheumatoid arthritis in individuals with the shared HLA-DR4 epitope. Arthritis Rheum 1999; 42:1485–1496.PubMedCrossRefGoogle Scholar
  161. 161.
    Dreyfus DH. Paleo-immunology: evidence consistent with insertion of a primordial herpes virus-like element in the origins of acquired immunity. PloS ONE 2009; 4:e5778.PubMedCrossRefGoogle Scholar
  162. 162.
    Massa M, Mazzoli F, Pignatti P et al. Proinflammatory responses to self HLA epitopes are triggered by molecular mimicry to Epstein-Barr virus proteins in oligoarticular juvenile idiopathic arthritis. Arthritis Rheum 2002; 46:2721–2729.PubMedCrossRefGoogle Scholar
  163. 163.
    Ray CG, Gall EP, Minnich LL et al. Acute polyarthritis associated with active Epstein-Barr virus infection. JAMA 1982; 248:2990–2993.PubMedCrossRefGoogle Scholar
  164. 164.
    Blaschke S, Schwarz G, Moneke D et al. Epstein-Barr virus infection in peripheral blood mononuclear cells, synovial fluid cells and synovial membranes of patients with rheumatoid arthritis. J Rheumatol 2000; 27:866–873.PubMedGoogle Scholar
  165. 165.
    Balandraud N, Meynard JB, Auger I et al. Epstein-Barr virus load in the peripheral blood of patients with rheumatoid arthritis: accurate quantification using real-time polymerase chain reaction. Arthritis Rheum 2003; 48:1223–1228.PubMedCrossRefGoogle Scholar
  166. 166.
    Takei M, Mitamura K, Fujiwara S et al. Detection of Epstein-Barr virus-encoded small RNA 1 and latent membrane protein 1 in synovial lining cells from rheumatoid arthritis patients. Int Immunol 1997; 9:739–743.PubMedCrossRefGoogle Scholar
  167. 167.
    Agarwal V, Singh R, Chauhan S. Remission of rheumatoid arthritis after acute disseminated varicella-zoster infection. Clin Rheumatol 2007; 26:779–780.PubMedCrossRefGoogle Scholar
  168. 168.
    Pomponi F, Cariati R, Zancai P et al. Retinoids irreversibly inhibit in vitro growth of Epstein-Barr virus-immortalized B lymphocytes. Blood 1996; 88:3147–3159.PubMedGoogle Scholar
  169. 169.
    Fox R, Sportsman R, Rhodes G et al. Rheumatoid arthritis synovial membrane contains a 62,000-molecular-weight protein that shares an antigenic epitope with the Epstein-Barr virus-encoded associated nuclear antigen. J Clin Invest 1986; 77:1539–1547.PubMedCrossRefGoogle Scholar
  170. 170.
    Birkenfeld P, Haratz N, Klein G et al. Cross-reactivity between the EBNA-1 p107 peptide, collagen and keratin: implications for the pathogenesis of rheumatoid arthritis. Clin Immunol Immunopathol 1990; 54:14–25.PubMedCrossRefGoogle Scholar
  171. 171.
    Kouri T, Petersen J, Rhodes G et al. Antibodies to synthetic peptides from Epstein-Barr nuclear antigen-1 in sera of patients with early rheumatoid arthritis and in preillness sera. J Rheumatol 1990; 17:1442–1449.PubMedGoogle Scholar
  172. 172.
    Baboonian C, Halliday D, Venables PJ et al. Antibodies in rheumatoid arthritis react specifically with the glycine alanine repeat sequence of Epstein-Barr nuclear antigen-1. Rheumatol Int 1989; 9:161–166.PubMedGoogle Scholar
  173. 173.
    Petersen J, Rhodes G, Roudier J et al. Altered immune response to glycine-rich sequences of Epstein-Barr nuclear antigen-1 in patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum 1990; 33:993–1000.PubMedCrossRefGoogle Scholar
  174. 174.
    Roudier J, Petersen J, Rhodes GH et al. Susceptibility to rheumatoid arthritis maps to a T-cell epitope shared by the HLA-Dw4 DR beta-1 chain and the Epstein-Barr virus glycoprotein gp110. Proc Natl Acad Sci USA 1989; 86:5104–5108.PubMedCrossRefGoogle Scholar
  175. 175.
    Tosato G, Steinberg AD, Blaese RM. Defective EBV-specific suppressor T-cell function in rheumatoid arthritis. N Engl J Med 1981; 305:1238–1243.PubMedCrossRefGoogle Scholar
  176. 176.
    Toussirot E, Wendling D, Tiberghien P et al. Decreased T-cell precursor frequencies to Epstein-Barr virus glycoprotein Gp110 in peripheral blood correlate with disease activity and severity in patients with rheumatoid arthritis. Ann Rheum Dis 2000; 59:533–538.PubMedCrossRefGoogle Scholar
  177. 177.
    Klatt T, Ouyang Q, Flad T et al. Expansion of peripheral CD8+ CD28-T cells in response to Epstein-Barr viurs in patients with rheumatoid arthritis. J Rheumatol 2005; 32:239–251.PubMedGoogle Scholar
  178. 178.
    David-Ameline J, Lim A, Davodeau F et al. Selection of T-cells reactive against autologous B lymphoblastoid cells during chronic rheumatoid arthritis. J Immunol 1996; 157:4697–4706.PubMedGoogle Scholar
  179. 179.
    Scotet E, David-Ameline J, Peyrat MA et al. T-cell response to Epstein-Barr virus transactivators in chronic rheumatoid arthritis. J Exp Med 1996; 184:1791–1800.PubMedCrossRefGoogle Scholar
  180. 180.
    Baeten D, Peene I, Union A et al. Specific presence of intracellular citrullinated proteins in rheumatoid arthritis synovium: relevance to antifilaggrin autoantibodies. Arthritis Rheum 2001; 44:2255–2262.PubMedCrossRefGoogle Scholar
  181. 181.
    Pratesi F, Tommasi C, Anzilotti C et al. Deiminated Epstein-Barr virus nuclear antigen 1 is a target of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum 2006; 54:733–741.PubMedCrossRefGoogle Scholar
  182. 182.
    Schellekens GA, Visser H, de Jong BA et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 2000; 43:155–163.PubMedCrossRefGoogle Scholar
  183. 183.
    Rantapaa-Dahlqvist S, de Jong BA, Berglin E et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 2003; 48:2741–2749.PubMedCrossRefGoogle Scholar
  184. 184.
    Gu SY, Huang TM, Ruan L et al. First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev Biol Stand 1995; 84:171–177.PubMedGoogle Scholar
  185. 185.
    Wolf HJ, Morgan AJ. Epstein-Barr Virus vaccines. In: Medveczky P, Friedman H, Bendinelli M, eds. Herpesviruses and Immunity. New York: Plenum Press, 1998:231–246.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2011

Authors and Affiliations

  • Hans Helmut Niller
    • 1
  • Hans Wolf
    • 1
  • Eva Ay
    • 2
  • Janos Minarovits
    • 2
  1. 1.Institute for Medical Microbiology and Hygiene of the University of RegensburgRegensburgGermany
  2. 2.Microbiological Research Group of the National Center for EpidemiologyBudapestHungary

Personalised recommendations