Profiling Epigenetic Alterations in Disease

  • José Ignacio Martín-Subero
  • Manel Esteller


Nowadays, epigenetics is one of the fastest growing research areas in biomedicine. Studies have demonstrated that changes in the epigenome are not only common in cancer, but are also involved in the pathogenesis of noncancerous diseases like immunological, cardiovascular, developmental and neurological/psychiatric disorders. At the same time, during the last years, a technological revolution has taken place in the field of epigenomics, which is defined as the study of epigenetic changes throughout the whole genome. Microarray technologies and more recently, the development of next generation sequencing devices are now providing researchers with tools to draw high-resolution maps of DNA methylation and histone modifications in normal tissues and diseases. This chapter will review the currently available high-throughput techniques for studying the epigenome and their applications for characterizing human diseases.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33Suppl:245–254.PubMedCrossRefGoogle Scholar
  2. 2.
    Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1):6–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007; 128(4):669–681.PubMedCrossRefGoogle Scholar
  4. 4.
    Bird A. Perceptions of epigenetics. Nature 2007; 447(7143):396–398.PubMedCrossRefGoogle Scholar
  5. 5.
    Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4):693–705.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8(2):93–103.PubMedCrossRefGoogle Scholar
  7. 7.
    Fraser P, Bickmore W. Nuclear organization of the genome and the potential for gene regulation. Nature 2007; 447(7143):413–417.PubMedCrossRefGoogle Scholar
  8. 8.
    Zaratiegui M, Irvine DV, Martienssen RA. Noncoding RNAs and gene silencing. Cell 2007; 128(4):763–776.PubMedCrossRefGoogle Scholar
  9. 9.
    Callinan PA, Feinberg AP. The emerging science of epigenomics. Hum Mol Genet 2006; 15Suppl 1:R95–R101.PubMedCrossRefGoogle Scholar
  10. 10.
    Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007; 8(4):286–298.PubMedCrossRefGoogle Scholar
  11. 11.
    Fazzari MJ, Greally JM. Epigenomics: beyond CpG islands. Nat Rev Genet 2004; 5(6):446–455.PubMedCrossRefGoogle Scholar
  12. 12.
    Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer 2003; 3(4):253–266.PubMedCrossRefGoogle Scholar
  13. 13.
    Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 2010; 11(3):191–203.PubMedCrossRefGoogle Scholar
  14. 14.
    Beck S, Olek A, Walter J. From genomics to epigenomics: a loftier view of life. Nat Biotechnol 1999; 17(12):1144.PubMedCrossRefGoogle Scholar
  15. 15.
    Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 2009; 10(10):669–680.PubMedCrossRefGoogle Scholar
  16. 16.
    Frommer M, McDonald LE, Millar DS et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 1992; 89(5):1827–1831.PubMedCrossRefGoogle Scholar
  17. 17.
    Herman JG, Graff JR, Myohanen S et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93(18):9821–9826.PubMedCrossRefGoogle Scholar
  18. 18.
    Frigola J, Ribas M, Risques RA et al. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res 2002; 30(7):e28.PubMedCrossRefGoogle Scholar
  19. 19.
    Kawai J, Hirotsune S, Hirose K et al. Methylation profiles of genomic DNA of mouse developmental brain detected by restriction landmark genomic scanning (RLGS) method. Nucleic Acids Res 1993; 21(24):5604–5608.PubMedCrossRefGoogle Scholar
  20. 20.
    Ramsay G. DNA chips: state-of-the art. Nat Biotechnol 1998; 16(1):40–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet 2010; 11(1):31–46.PubMedCrossRefGoogle Scholar
  22. 22.
    Huang TH, Perry MR, Laux DE. Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 1999; 8(3):459–470.PubMedCrossRefGoogle Scholar
  23. 23.
    Ching TT, Maunakea AK, Jun P et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet 2005; 37(6):645–651.PubMedCrossRefGoogle Scholar
  24. 24.
    Khulan B, Thompson RF, Ye K et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 2006; 16(8):1046–1055.PubMedCrossRefGoogle Scholar
  25. 25.
    Schumacher A, Kapranov P, Kaminsky Z et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res 2006; 34(2):528–542.PubMedCrossRefGoogle Scholar
  26. 26.
    Gebhard C, Schwarzfischer L, Pham TH et al. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res 2006; 66(12):6118–6128.PubMedCrossRefGoogle Scholar
  27. 27.
    Weber M, Davies JJ, Wittig D et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005; 37(8):853–862.PubMedCrossRefGoogle Scholar
  28. 28.
    Rauch T, Li H, Wu X et al. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 2006; 66(16):7939–7947.PubMedCrossRefGoogle Scholar
  29. 29.
    Jorgensen HF, Adie K, Chaubert P et al. Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res 2006; 34(13):e96.PubMedCrossRefGoogle Scholar
  30. 30.
    Ballestar E, Paz MF, Valle L et al. Methyl-C pG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J 2003; 22(23):6335–6345.PubMedCrossRefGoogle Scholar
  31. 31.
    Weber M, Hellmann I, Stadler MB et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007; 39(4):457–466.PubMedCrossRefGoogle Scholar
  32. 32.
    Bibikova M, Lin Z, Zhou L et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res 2006; 16(3):383–393.PubMedCrossRefGoogle Scholar
  33. 33.
    Gitan RS, Shi H, Chen CM et al. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 2002; 12(1):158–164.PubMedCrossRefGoogle Scholar
  34. 34.
    Karpf AR. Epigenomic reactivation screening to identify genes silenced by DNA hypermethylation in human cancer. Curr Opin Mol Ther 2007; 9(3):231–241.PubMedGoogle Scholar
  35. 35.
    Shames DS, Minna JD, Gazdar AF. Methods for detecting DNA methylation in tumors: from bench to bedside. Cancer Lett 2007; 251(2):187–198.PubMedCrossRefGoogle Scholar
  36. 36.
    Yan PS, Chen CM, Shi H et al. Applications of CpG island microarrays for high-throughput analysis of DNA methylation. J Nutr 2002; 132(8 Suppl):2430S–2434S.PubMedGoogle Scholar
  37. 37.
    Wilson IM, Davies JJ, Weber M et al. Epigenomics: mapping the methylome. Cell Cycle 2006; 5(2):155–158.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang X, Yazaki J, Sundaresan A et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 2006; 126(6):1189–1201.PubMedCrossRefGoogle Scholar
  39. 39.
    Adorjan P, Distler J, Lipscher E et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res 2002; 30(5):e21.PubMedCrossRefGoogle Scholar
  40. 40.
    Bibikova M, Chudin E, Wu B et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res 2006; 16(9):1075–1083.PubMedCrossRefGoogle Scholar
  41. 41.
    Bibikova M, Le J, Barnes B et al. Genome-wide DNA methylation profiling using Infinium assay. Epigenomics 2009; 1(1):177–200.PubMedCrossRefGoogle Scholar
  42. 42.
    Kanduri M, Cahill N, Goransson H et al. Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. Blood 2010; 115(2):296–305.PubMedCrossRefGoogle Scholar
  43. 43.
    Ehrich M, Turner J, Gibbs P et al. Cytosine methylation profiling of cancer cell lines. Proc Natl Acad Sci USA 2008; 105(12):4844–4849.PubMedCrossRefGoogle Scholar
  44. 44.
    von Bubnoff A. Next-generation sequencing: the race is on. Cell 2008; 132(5):721–723.CrossRefGoogle Scholar
  45. 45.
    Oda M, Glass JL, Thompson RF et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 2009; 37(12):3829–3839.PubMedCrossRefGoogle Scholar
  46. 46.
    Brunner AL, Johnson DS, Kim SW et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 2009; 19(6):1044–1056.PubMedCrossRefGoogle Scholar
  47. 47.
    Ball MP, Li JB, Gao Y et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 2009; 27(4):361–368.PubMedCrossRefGoogle Scholar
  48. 48.
    Ruike Y, Imanaka Y, Sato F et al. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 2010; 11:137.PubMedCrossRefGoogle Scholar
  49. 49.
    Taylor KH, Kramer RS, Davis JW et al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 2007; 67(18):8511–8518.PubMedCrossRefGoogle Scholar
  50. 50.
    Meissner A, Mikkelsen TS, Gu H et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008; 454(7205):766–770.PubMedGoogle Scholar
  51. 51.
    Hodges E, Smith AD, Kendall J et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res 2009; 19(9):1593–1605.PubMedCrossRefGoogle Scholar
  52. 52.
    Li JB, Gao Y, Aach J et al. Multiplex padlock targeted sequencing reveals human hypermutable CpG variations. Genome Res 2009; 19(9):1606–1615.PubMedCrossRefGoogle Scholar
  53. 53.
    Mamanova L, Coffey AJ, Scott CE et al. Target-enrichment strategies for next-generation sequencing. Nat Methods 2010; 7(2):111–118.PubMedCrossRefGoogle Scholar
  54. 54.
    Cokus SJ, Feng S, Zhang X et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008; 452(7184):215–219.PubMedCrossRefGoogle Scholar
  55. 55.
    Lister R, O’Malley RC, Tonti-Filippini J et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 2008; 133(3):523–536.PubMedCrossRefGoogle Scholar
  56. 56.
    Lister R, Pelizzola M, Dowen RH et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462(7271):315–322.PubMedCrossRefGoogle Scholar
  57. 57.
    Laurent L, Wong E, Li G et al. Dynamic changes in the human methylome during differentiation. Genome Res 2010; 20(3):320–331.PubMedCrossRefGoogle Scholar
  58. 58.
    Bernstein BE, Humphrey EL, Liu CL et al. The use of chromatin immunoprecipitation assays in genome-wide analyses of histone modifications. Methods Enzymol 2004; 376:349–360.PubMedCrossRefGoogle Scholar
  59. 59.
    Huebert DJ, Kamal M, O’Donovan A et al. Genome-wide analysis of histone modifications by ChIP-on-chip. Methods 2006; 40(4):365–369.PubMedCrossRefGoogle Scholar
  60. 60.
    Kiermer V. Embryos and biopsies on the ChIP-ing forecast. Nat Methods 2006; 3(8):583.PubMedCrossRefGoogle Scholar
  61. 61.
    O’Neill LP, VerMilyea MD, Turner BM. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 2006; 38(7):835–841.PubMedCrossRefGoogle Scholar
  62. 62.
    Attema JL, Papathanasiou P, Forsberg EC et al. Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc Natl Acad Sci USA 2007; 104(30):12371–12376.PubMedCrossRefGoogle Scholar
  63. 63.
    Lee TI, Jenner RG, Boyer LA et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125(2):301–313.PubMedCrossRefGoogle Scholar
  64. 64.
    Christensen BC, Houseman EA, Marsit CJ et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 2009; 5(8):e1000602.PubMedCrossRefGoogle Scholar
  65. 65.
    Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007; 8(4):253–262.PubMedCrossRefGoogle Scholar
  66. 66.
    Weaver IC, Cervoni N, Champagne FA et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7(8):847–854.PubMedCrossRefGoogle Scholar
  67. 67.
    Weidman JR, Dolinoy DC, Murphy SK et al. Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J 2007; 13(1):9–16.PubMedCrossRefGoogle Scholar
  68. 68.
    Kaminsky ZA, Tang T, Wang SC et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 2009; 41(2):240–245.PubMedCrossRefGoogle Scholar
  69. 69.
    Fraga MF, Ballestar E, Paz MF et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102(30):10604–10609.PubMedCrossRefGoogle Scholar
  70. 70.
    Martin-Subero JI, Ammerpohl O, Bibikova M et al. A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms. PLoS One 2009; 4(9):e6986.PubMedCrossRefGoogle Scholar
  71. 71.
    Baylin SB, Ohm JE. Epigenetic gene silencing in cancer-a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6(2):107–116.PubMedCrossRefGoogle Scholar
  72. 72.
    Esteller M. Epigenetics in cancer. N Engl J Med 2008; 358(11):1148–1159.PubMedCrossRefGoogle Scholar
  73. 73.
    Laird PW. Cancer epigenetics. Hum Mol Genet 2005; 14Spec No 1:R65–76.PubMedCrossRefGoogle Scholar
  74. 74.
    Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4(2):143–153.PubMedCrossRefGoogle Scholar
  75. 75.
    Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007; 128(4):683–692.PubMedCrossRefGoogle Scholar
  76. 76.
    Paz MF, Fraga MF, Avila S et al. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res 2003; 63(5):1114–1121.PubMedGoogle Scholar
  77. 77.
    Costello JF, Fruhwald MC, Smiraglia DJ et al. Aberrant CpG-island methylation has nonrandom and tumour-type-specific patterns. Nat Genet 2000; 24(2):132–138.PubMedCrossRefGoogle Scholar
  78. 78.
    Keshet I, Schlesinger Y, Farkash S et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 2006; 38(2):149–153.PubMedCrossRefGoogle Scholar
  79. 79.
    Martin-Subero JI, Kreuz M, Bibikova M et al. New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic and transcriptional profiling. Blood 2009; 113(11):2488–2497.PubMedCrossRefGoogle Scholar
  80. 80.
    Ohm JE, Baylin SB. Stem cell chromatin patterns: an instructive mechanism for DNA hypermethylation? Cell Cycle 2007; 6(9):1040–1043.PubMedCrossRefGoogle Scholar
  81. 81.
    Schlesinger Y, Straussman R, Keshet I et al. Polycomb-mediated methylation on Lys27 of histone H3 premarks genes for de novo methylation in cancer. Nat Genet 2007; 39(2):232–236.PubMedCrossRefGoogle Scholar
  82. 82.
    Widschwendter M, Fiegl H, Egle D et al. Epigenetic stem cell signature in cancer. Nat Genet 2007; 39(2):157–158.PubMedCrossRefGoogle Scholar
  83. 83.
    Ballestar E, Esteller M, Richardson BC. The epigenetic face of systemic lupus erythematosus. J Immunol 2006; 176(12):7143–7147.PubMedGoogle Scholar
  84. 84.
    Corvetta A, Della Bitta R, Luchetti MM et al. 5-Methylcytosine content of DNA in blood, synovial mononuclear cells and synovial tissue from patients affected by autoimmune rheumatic diseases. J Chromatogr 1991; 566(2):481–491.PubMedGoogle Scholar
  85. 85.
    Javierre BM, Fernandez AF, Richter J et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 2010; 20(2):170–179.PubMedCrossRefGoogle Scholar
  86. 86.
    Lund G, Andersson L, Lauria M et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 2004; 279(28):29147–29154.PubMedCrossRefGoogle Scholar
  87. 87.
    Turunen MP, Aavik E, Yla-Herttuala S. Epigenetics and atherosclerosis. Biochim Biophys Acta 2009; 1790(9):886–891.PubMedCrossRefGoogle Scholar
  88. 88.
    Gluckman PD, Hanson MA, Buklijas T et al. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol 2009; 5(7):401–408.PubMedCrossRefGoogle Scholar
  89. 89.
    Ehrlich M. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol 2003; 109(1):17–28.PubMedCrossRefGoogle Scholar
  90. 90.
    Amir RE, Van den Veyver IB, Wan M et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23(2):185–188.PubMedCrossRefGoogle Scholar
  91. 91.
    Esteller M. Rett syndrome: the first forty years: 1966–2006. Epigenetics 2007; 2(1):1.PubMedCrossRefGoogle Scholar
  92. 92.
    Bartsch O, Schmidt S, Richter M et al. DNA sequencing of CREBBP demonstrates mutations in 56% of patients with Rubinstein-Taybi syndrome (RSTS) and in another patient with incomplete RSTS. Hum Genet 2005; 117(5):485–493.PubMedCrossRefGoogle Scholar
  93. 93.
    Tatton-Brown K, Rahman N. Sotos syndrome. Eur J Hum Genet 2007; 15(3):264–271.PubMedCrossRefGoogle Scholar
  94. 94.
    Horsthemke B, Buiting K. Genomic imprinting and imprinting defects in humans. Adv Genet 2008; 61:225–246.PubMedCrossRefGoogle Scholar
  95. 95.
    Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001; 2(1):21–32.PubMedCrossRefGoogle Scholar
  96. 96.
    Nicholls RD, Saitoh S, Horsthemke B. Imprinting in Prader-Willi and Angelman syndromes. Trends Genet 1998; 14(5):194–200.PubMedCrossRefGoogle Scholar
  97. 97.
    Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes and therapies. Lancet Neurol 2009; 8(11):1056–1072.PubMedCrossRefGoogle Scholar
  98. 98.
    Chen KL, Wang SS, Yang YY et al. The epigenetic effects of amyloid-beta(1–40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 2009; 378(1):57–61.PubMedCrossRefGoogle Scholar
  99. 99.
    Wang SC, Oelze B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 2008; 3(7):e2698.PubMedCrossRefGoogle Scholar
  100. 100.
    Pieper HC, Evert BO, Kaut O et al. Different methylation of the TNF-alpha promoter in cortex and substantia nigra: Implications for selective neuronal vulnerability. Neurobiol Dis 2008; 32(3):521–527.PubMedCrossRefGoogle Scholar
  101. 101.
    Ryu H, Lee J, Hagerty SW et al. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc Natl Acad Sci USA 2006; 103(50):19176–19181.PubMedCrossRefGoogle Scholar
  102. 102.
    Sadri-Vakili G, Bouzou B, Benn CL et al. Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Hum Mol Genet 2007; 16(11):1293–1306.PubMedCrossRefGoogle Scholar
  103. 103.
    Mill J, Tang T, Kaminsky Z et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008; 82(3):696–711.PubMedCrossRefGoogle Scholar
  104. 104.
    Jones PA, Martienssen R. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res 2005; 65(24):11241–11246.PubMedCrossRefGoogle Scholar
  105. 105.
    Esteller M. The necessity of a human epigenome project. Carcinogenesis 2006; 27(6):1121–1125.PubMedCrossRefGoogle Scholar
  106. 106.
    Rauscher FJ, 3rd. It is time for a Human Epigenome Project. Cancer Res 2005; 65(24):11229.PubMedCrossRefGoogle Scholar
  107. 107.
    Jeltsch A, Walter J, Reinhardt R et al. German human methylome project started. Cancer Res 2006; 66(14):7378.PubMedCrossRefGoogle Scholar
  108. 108.
    Garber K. Momentum building for human epigenome project. J Natl Cancer Inst 2006; 98(2):84–86.PubMedCrossRefGoogle Scholar
  109. 109.
    Eckhardt F, Beck S, Gut IG et al. Future potential of the Human Epigenome Project. Expert Rev Mol Diagn 2004; 4(5):609–618.PubMedCrossRefGoogle Scholar
  110. 110.
    Bradbury J. Human epigenome project—up and running. PLoS Biol 2003; 1(3):E82.PubMedCrossRefGoogle Scholar
  111. 111.
    Jones PA, Archer TK, Baylin SB et al. Moving AHEAD with an international human epigenome project. Nature 2008; 454(7205):711–715.CrossRefGoogle Scholar
  112. 112.
    Branton D, Deamer DW, Marziali A et al. The potential and challenges of nanopore sequencing. Nat Biotechnol 2008; 26(10):1146–1153.PubMedCrossRefGoogle Scholar
  113. 113.
    van Steensel B. Mapping of genetic and epigenetic regulatory networks using microarrays. Nat Genet 2005; 37 Suppl:S18–24.PubMedCrossRefGoogle Scholar
  114. 114.
    Toyota M, Ho C, Ahuja N et al. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 1999; 59(10):2307–2312.PubMedGoogle Scholar
  115. 115.
    Estecio MR, Yan PS, Ibrahim AE et al. High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res 2007; 17(10):1529–1536.PubMedCrossRefGoogle Scholar
  116. 116.
    Yuan E, Haghighi F, White S et al. A single nucleotide polymorphism chip-based method for combined genetic and epigenetic profiling: validation in decitabine therapy and tumor/normal comparisons. Cancer Res 2006; 66(7):3443–3451.PubMedCrossRefGoogle Scholar
  117. 117.
    Ibrahim AE, Thorne NP, Baird K et al. MMASS: an optimized array-based method for assessing CpG island methylation. Nucleic Acids Res 2006; 34(20):e136.PubMedCrossRefGoogle Scholar
  118. 118.
    Hu M, Yao J, Polyak K. Methylation-specific digital karyotyping. Nat Protoc 2006; 1(3):1621–1636.PubMedCrossRefGoogle Scholar
  119. 119.
    Pfister S, Schlaeger C, Mendrzyk F et al. Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Res 2007; 35(7):e51.PubMedCrossRefGoogle Scholar
  120. 120.
    Suzuki H, Gabrielson E, Chen W et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 2002; 31(2):141–149.PubMedCrossRefGoogle Scholar
  121. 121.
    Hodges E, Smith AD, Kendall J et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res 2009; 19(9):1593–605.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2011

Authors and Affiliations

  • José Ignacio Martín-Subero
    • 1
  • Manel Esteller
    • 1
  1. 1.Cancer Epigenetics and Biology Program (PEBC)Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain

Personalised recommendations