Surface Reconstruction and Geometric Modeling for Digital Prosthesis Design

  • Luiz C. M. de AquinoEmail author
  • Gilson A. Giraldi
  • Paulo S. S. Rodrigues
  • Antônio Lopes A. Junior
  • Jaime S. Cardoso
  • Jasjit S. Suri


The restoration and recovery of a defective skull can be performed through operative techniques to implant a customized prosthesis. Recently, image processing, surface reconstruction, and geometric methods have been used for digital prosthesis design. In this chapter, we review state-of-the-art approaches in this field and discuss related issues. The field of prosthesis modeling may include methods for segmentation and surface reconstruction, geometric modeling, multiscale methods, and user interaction approaches. So, we present the background in the area by reviewing methods in isosurface extraction from 3D images, deformable models, wavelets, and subdivision surfaces. Then, we discuss some proposals in this area: a balloon model for slice-by-slice bone reconstruction, the T-Surfaces plus isosurface generation models as a general framework for surface reconstruction and user interaction, wavelets-based multiscale methods, and filling holes methods. We describe also experimental results and a computational tool that we are developing for image processing and visualization which can be used for digital prosthesis design. We offer a discussion by presenting some perspectives and issues related to the models described on previous sections. Finally, we present the conclusions of our work.


Surface Reconstruction Subdivision Scheme Deformable Model Subdivision Surface Polygonal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank CNPq (grant 133865/2009-6) and INCT-MACC for financial support.


  1. 1.
    -Matic for biomedical research.
  2. 2.
    INCT-MACC – Brazilian Virtual Institute for Applications of Scientific Computing in Medicine. URL
  3. 3.
  4. 4.
    NumPy. URL Acessado em: 15 dez. 2009
  5. 5.
    Portal of brazilian public software. URL
  6. 6.
    Python programming language. URL Acessado em: 18 dez. 2009
  7. 7.
    Scipy. URL Acessado em: 15 dez. 2009
  8. 8.
    Allgower EL, Georg K (1990) Numerical continuation methods: an introduction. Springer, Berlin/HeidelbergGoogle Scholar
  9. 9.
    Barequet G, Sharir M (1995) Filling gaps in the boundary of a polyhedron. Comput Aided Geom Des 12(2):207–229CrossRefGoogle Scholar
  10. 10.
    Bhargava D, Bartlett P, Russell J, Liddington M, Tyagi A, Chumas P (2010) Construction of titanium cranioplasty plate using craniectomy bone flap as template. Acta Neurochir 152(1):173–176CrossRefGoogle Scholar
  11. 11.
    Carneiro BP, Silva CT, Kaufman AE (1996) Tetra-cubes: an algorithm to generate 3D isosurfaces based upon tetrahedra. In: International symposium on computer graphics, image processing and vision (SIBGRAPI’96)Google Scholar
  12. 12.
    Catmull E, Clark J (1978) Recursively generated b-spline surfaces on arbitrary topological meshes. Comput Aided Des 10:350–355CrossRefGoogle Scholar
  13. 13.
    Chiang YJ, Silva C, Schroeder W (1998) Interactive out-of-core isosurface extraction. In: Proceedings of IEEE visualization 1998, pp 167–174Google Scholar
  14. 14.
    Cohen LD (1991) On active contour models and balloons. CVGIP:Image Underst 53(2):211–218CrossRefGoogle Scholar
  15. 15.
    Di Lorenzo N, Pirillo V (2008) From computerized tomography data processing to rapid manufacturing of custom-made prostheses for cranioplasty case report comment. J Neurosurg Sci 52(4):116Google Scholar
  16. 16.
    van Ginneken B, Frangi A, Staal J, ter Haar Romeny B, Viergever M (2002) Active shape model segmentation with optimal features. IEEE Trans Med Imaging 21(8):924–933PubMedCrossRefGoogle Scholar
  17. 17.
    Giraldi G, Strauss E, Apolinario A, Oliveira AF (2001) An initialization method for deformable models. In: 5th World multiconference on systemics, cybernetics and informatics (SCI 2001)Google Scholar
  18. 18.
    Giraldi GA, Oliveira AAF, Carvalho L (2005) Mining cellular automata databases throug pca models. http://arxivorg/abs/cs/0511052
  19. 19.
    Goiato MC, Anchieta RB, Pita MS, dos Santos DM (2009) Reconstruction of skull defects: currently available materials. J Craniofac Surg 20(5):1512–1518PubMedCrossRefGoogle Scholar
  20. 20.
    Graps A (2004) Historical perspective.\\_history.html
  21. 21.
    House DH, Breen DE (eds) (2000) Cloth modeling and animation. A K Peters, Natick, MAGoogle Scholar
  22. 22.
    Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  23. 23.
    Johnson R, Wichern D (1998) Applied multivariate statistical analysis. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  24. 24.
    Kai CC, Meng CS, Ching LS, Hoe EK, Fah LK (2009) Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci 16(1):56–63CrossRefGoogle Scholar
  25. 25.
    Laeven P, Poukens J, Beerens MMA (2003) 3-Matic assists in true rapid design and manufacturing of a custom skull implant. Technical report, Materialize,
  26. 26.
    Lauric R, Frisken S (2007) Soft segmentation of CT Brain Data. Technical Report TR-2007-3, Department of Computer Science – Tufts University, Medford, MAGoogle Scholar
  27. 27.
    Lee SC, Wu CT, Lee ST, Chen PJ (1998) Rapid prototyping assisted surgery planning. Int J Adv Manuf Technol 14(9):624–630CrossRefGoogle Scholar
  28. 28.
    Lee MY, Chang CC, Lin CC, Lo LJ, Chen YR (2002) Custom implant design for patients with cranial defects. IEEE Eng Med Biol Mag 21(2):38–44PubMedCrossRefGoogle Scholar
  29. 29.
    Levin A (1999) Filling n-sided holes using combined subdivision schemes. In: Laurent PJ, Sablonniere P, Schumaker LL (eds) Curve and surface design. Vanderbilt University Press, Nashville, TN, pp 221–228Google Scholar
  30. 30.
    Lin L, Zhang J, Fang M (2008) Modelling the bio-scaffold for repairing symmetrical and unsymmetrical defective skull. In: The 2nd International conference on bioinformatics and biomedical engineering, 2008 (ICBBE 2008). pp 905–908, doi:10.1109/ICBBE.2008.222Google Scholar
  31. 31.
    Liulan L, Hanqing L, Qingxi H, Limin L, Minglun F (2006) Research of the method of reconstructing the repair bionic scaffold based on tissue engineering. IET Conference Publications 2006(CP524):1275–1279Google Scholar
  32. 32.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169CrossRefGoogle Scholar
  33. 33.
    McInerney T, Terzopoulos D (1999) Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Trans Med Imaging 18(10):840–850PubMedCrossRefGoogle Scholar
  34. 34.
    Meyer Y (1992) Wavelets and operators. Cambridge University Press, CambridgeGoogle Scholar
  35. 35.
    Pfeifle R, Seidel HP (1996) Triangular b-splines for blending & filling of polygonal holes. In: Proceedings of the conference on Graphics interface’96, pp 186–193Google Scholar
  36. 36.
    Pianykh OS (2008) Digital imaging and communications in medicine (DICOM): a practical introduction and survival guide. Springer, Berlin/HeidelbergGoogle Scholar
  37. 37.
    Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics. Springer, BerlinGoogle Scholar
  38. 38.
    Sabin M (1991) Cubic recursive division with bounded curvature. In: Laurent PJ, le Mehaute A, Schumaker LL (eds) Curves and surfaces, Academic, Boston, pp 411–414Google Scholar
  39. 39.
    Sanan AM, Haines SJM (1997) Repairing holes in the head: a history of cranioplasty. Neurosurgery 40(3):588–603PubMedCrossRefGoogle Scholar
  40. 40.
    Sethian JA (1996) Level set methods: evolving interfaces in geometry, fluid mechanics, computer vision and materials sciences. Cambridge University Press, CambridgeGoogle Scholar
  41. 41.
    Strauss E, Jimenez W, Giraldi G, Silva R, Oliveira A (2002) A surface extraction approach based on multi-resolution methods and T-surfaces framework. Technical report, National Laboratory for Scientific Computing,
  42. 42.
    Strauss E, Jimenez W, Giraldi GA, Silva R, Oliveira AF (2002) A semi-automatic surface reconstruction framework based on T-surfaces and isosurface extraction methods. In: International symposium on computer graphics, image processing and vision (SIBGRAPI’2002)Google Scholar
  43. 43.
    Suri JS, Liu K, Singh S, Laxminarayan S, Zeng X, Reden L (2002) Shape recovery algorithms using level sets in 2-d/3-d medical imagery: a state-of-the-art review. IEEE Trans Inf Technol Biomed 6(1):8–28PubMedCrossRefGoogle Scholar
  44. 44.
    Sutton P, Hansen C (2000) Accelerated isosurface extraction in time-varying fields. IEEE Trans Vis Comp Graph 6(2):98–107CrossRefGoogle Scholar
  45. 45.
    Volino P, Magnenat-Thalmann N (2000) Virtual clothing: theory and practice. Springer, BerlinGoogle Scholar
  46. 46.
    Wang Y (2005) The study of three-dimensional reconstructed bioceramics in the successional defect of mandible. The Second Military Medical University, ShanghaiGoogle Scholar
  47. 47.
    Witten G (1993) Scale space tracking and deformable sheet models for computational vision. IEEE Trans Pattern Anal Mach Intell 15(7):697–706CrossRefGoogle Scholar
  48. 48.
    You F, Hu Q, Yao Y, Lu Q (2009) A new modeling method on skull defect repair. In: International conference on Measuring technology and mechatronics automation, 2009 (ICMTMA’09) 1(11–12):568–572Google Scholar
  49. 49.
    Zhao Y, Zhou J (2006) The analysis of clinical effect of individualized cranioplasty with different materials for 75 skull defect patients. Med J Chin People’s Liberation Army 31:354–355Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Luiz C. M. de Aquino
    • 1
    Email author
  • Gilson A. Giraldi
  • Paulo S. S. Rodrigues
  • Antônio Lopes A. Junior
  • Jaime S. Cardoso
  • Jasjit S. Suri
  1. 1.National Laboratory for Scientific ComputingPetrópolisBrazil

Personalised recommendations