Cross-Phase Modulation-Induced Nonlinear Phase Noise for Quadriphase-Shift-Keying Signals

Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 7)

Abstract

For a quadriphase-shift keying (QPSK) or differential QPSK (DQPSK) signal in a wavelengthdivision- multiplexed (WDM) system, cross-phase modulation (XPM) induces nonlinear phase noise from adjacent WDM channels. The impact of XPM-induced nonlinear phase noise is investigated when the adjacent WDM channels are either constant-intensity phase-modulated or on-off keying (OOK) signals. XPM-induced nonlinear phase noise is Gaussian distributed. For both QPSK and DQPSK signals, the phase error standard deviation (STD) should be less than 4o to 6o for a raw bit-error-rate (BER) between 10-5 to 10-3 before forward error correction (FEC). For DQPSK signals with mean nonlinear phase shift up to 0.5 rad, the SNR penalty is less than 0.5 dB due to the XPM-induced nonlinear phase noise from adjacent OOK WDM channels without guard-band. For QPSK signals with feedforward carrier recovery, the smoothing filter must be designed to minimize the phase error. The optimal Wiener filter can lower the phase error of QPSK signals to within 4o to 6o even when the adjacent channels are OOK signals without guardband.

References

  1. 1.
    J.M. Kahn, K.-P. Ho, IEEE J. Sel. Top. Quant. Electron. 10(2), 259 (2004)CrossRefGoogle Scholar
  2. 2.
    K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, New York, 2005)Google Scholar
  3. 3.
    E. Ip, A.P.T. Lau, D.J.F. Barros, J.M. Kahn, Opt. Express 16(2), 753 (2008)CrossRefADSGoogle Scholar
  4. 4.
    X. Zhou, J. Yu, M.F. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Ten, H.B. Matthew, S.K. Mishra, J. Lightwave Technol. 28(4), 456 (2010)CrossRefADSGoogle Scholar
  5. 5.
    T. Okoshi, K. Kikuchi, Coherent Optical Fiber Communications (KTK Scientific, Tokyo, 1988)Google Scholar
  6. 6.
    S. Betti, G. de Marchis, E. Iannone, Coherent Optical Communication Systems (Wiley, New York, 1995)Google Scholar
  7. 7.
    J.P. Gordon, L.F. Mollenauer, Opt. Lett. 15(23), 1351 (1990)CrossRefADSGoogle Scholar
  8. 8.
    H. Kim, A.H. Gnauck, IEEE Photon. Technol. Lett. 15(2), 320 (2003)CrossRefADSGoogle Scholar
  9. 9.
    K.-P. Ho, in Advances in Optics and Laser Research, vol. 3, ed. by W.T. Arkin (Nova Science Publishers, NY, 2003). http://arXiv.org/physics/0303090
  10. 10.
    K.-P. Ho, H.-C. Wang, IEEE Photon. Technol. Lett. 17(7), 1426 (2005)CrossRefADSGoogle Scholar
  11. 11.
    H. Kim, J. Lightwave Technol. 21(8), 1770 (2003)CrossRefADSGoogle Scholar
  12. 12.
    K.-P. Ho, IEEE J. Sel. Top. Quant. Electron. 10(2), 421 (2004)CrossRefGoogle Scholar
  13. 13.
    K.-P. Ho, H.-C. Wang, J. Lightwave Technol. 24(1), 396 (2006)CrossRefADSGoogle Scholar
  14. 14.
    A.S. Lenihan, G.E. Tudury, W. Astar, G.M. Carter, XPM-induced impairments in RZ-DPSK transmission in a multi-modulation format WDM systems, Conference on the lasers and electro-optics, CLEO, Paper CWO5, 2005Google Scholar
  15. 15.
    G.W. Lu, L.-K. Chen, C.K. Chan, Performance comparison of DPSK and OOK signals with OOK-modulated adjacent channel in WDM systems, Opto-electronics communication conference, OECC, Paper 7B3-5, 2005Google Scholar
  16. 16.
    H. Griesser, J.P. Elbers, Influence of cross-phase modulation induced nonlinear phase noise on DQPSK signals from neighbouring OOK channels, European conference on optical communication, ECOC, Paper Tu1, 2005Google Scholar
  17. 17.
    S. Chandrasekhar, X. Liu, IEEE Photon. Technol. Lett. 19(22), 1801 (2007)CrossRefADSGoogle Scholar
  18. 18.
    R.S. Luís, B. Clouet, A. Teixeira, P. Monteiro, Opt. Lett. 32(19), 2786 (2007)CrossRefADSGoogle Scholar
  19. 19.
    T. Tanimura, S. Oda, M. Yuki, H. Zhang, L. Li, Z. Tao, H. Nakashima, T. Hoshida, K. Nakamura, J.C. Rasmussen, Nonlinearity tolerance of direct detection and coherent receivers for 43 Gb/s RZ-DQPSK signals with co-propagating 11.1 Gb/s NRZ signals over NZ-DSF, Optical fiber communication conference, OFC, Paper OTuM4, 2008Google Scholar
  20. 20.
    M. Bertolini, P. Serena, N. Rossi, A. Bononi, Numerical Monte Carlo comparison between coherent PDM-QPSK/OOK and incoherent DQPSK/OOK hybrid systems, European conference on optical communication, ECOC, Paper P.4.16, 2008Google Scholar
  21. 21.
    A. Carena, V. Curri, P. Poggiolini, F. Forghieri, Guard-band for 111 Gbit/s coherent PM-QPSK channels on legacy fiber links carrying 10 Gbit/s IMDD channels, Optical fiber communication conference, OFC, Paper OThR7, 2009Google Scholar
  22. 22.
    O. Bertran-Pardo, J. Renaudier, G. Charlet, H. Mardoyan, P. Tran, S. Bigo, IEEE Photon. Technol. Lett. 20(15), 1314 (2008)CrossRefADSGoogle Scholar
  23. 23.
    Z. Tao, W. Yan, S. Oda, T. Hoshida, J.C. Rasmussen, Opt. Express 17(16), 13860 (2009)CrossRefADSGoogle Scholar
  24. 24.
    A. Bononi, M. Bertolini, P. Serena, G. Bellotti, J. Lightwave Technol. 27(18), 3974 (2009)CrossRefADSGoogle Scholar
  25. 25.
    E. Ip, J.M. Kahn, J. Lightwave Technol. 25(9), 2675 (2007); J. Lightwave Technol. 27(13), 2552 (2009)Google Scholar
  26. 26.
    R. Noé, J. Lightwave Technol. 23(2), 802 (2005)CrossRefADSGoogle Scholar
  27. 27.
    K.-P. Ho, IEEE Photon. Technol. Lett. 16(1), 308 (2004)CrossRefADSGoogle Scholar
  28. 28.
    V.K. Prabhu, IEEE Trans. Commun. Technol. COM-17(1), 33 (1969)Google Scholar
  29. 29.
    P.C. Jain, N.M. Blachman, IEEE Trans. Info. Theor. IT-19(5), 623 (1973)Google Scholar
  30. 30.
    N.M. Blachman, IEEE Trans. Commun. COM-29(3), 364 (1981)Google Scholar
  31. 31.
    T.K. Chiang, N. Kagi, T.K. Fong, M.E. Marhic, L.G. Kazovsky, IEEE Photon. Technol. Lett. 6(6), 733 (1994)CrossRefADSGoogle Scholar
  32. 32.
    T.K. Chiang, N. Kagi, M.E. Marhic, L.G. Kazovsky, J. Lightwave Technol. 14(3), 249 (1996)CrossRefADSGoogle Scholar
  33. 33.
    K.-P. Ho, E.T.P. Kong, L.Y. Chan, L-K. Chan, F. Tong, IEEE Photon. Technol. Lett. 11(9), 1126 (1999)Google Scholar
  34. 34.
    J. Leibrich, C. Wree, W. Rosenkranz, IEEE Photon. Technol. Lett. 14(2), 215 (2002)CrossRefGoogle Scholar
  35. 35.
    K.-P. Ho, Opt. Commun. 169(1–6), 63 (1999)CrossRefADSGoogle Scholar
  36. 36.
    R. Hui, K.R. Demarest, C.T. Allen, J. Lightwave Technol. 17(6), 1018 (1999)CrossRefADSGoogle Scholar
  37. 37.
    A.V.T. Cartaxo, J. Lightwave Technol. 17(2), 178 (1999)CrossRefADSGoogle Scholar
  38. 38.
    J.-A. Huang, K.-P. Ho, Exact error probability of DQPSK signal with nonlinear phase noise, Proceedings of the 5th Pacific Rim conference on lasers and electro-optics, CLEO/PR, Paper TU4H-(9)-5, 2003Google Scholar
  39. 39.
    X. Wei, X. Liu, Opt. Lett. 28(23), 2300 (2003)CrossRefADSGoogle Scholar
  40. 40.
    A.P.T. Lau, S. Rabbani, J.M. Kahn, J. Ligtwave Technol. 26(14), 2128 (2008)CrossRefADSGoogle Scholar
  41. 41.
    J.J. Spilker Jr., Digital Communications by Satellite (Prentice Hall, NJ, 1977)Google Scholar
  42. 42.
    L.G. Kazovsky, J. Lightwave Technol. LT-4(4), 415 (1986)Google Scholar
  43. 43.
    K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation (Wiley, New York, 1999)Google Scholar
  44. 44.
    S. Norimatsu, K. Iwashita, J. Lightwave Technol. 10(3), 341 (1992)CrossRefADSGoogle Scholar
  45. 45.
    T. Pfau, S. Hoffmann, R. Noé, J. Lightwave Technol. 27(8), 989 (2009)CrossRefADSGoogle Scholar
  46. 46.
    M.G. Taylor, J. Lightwave Technol. 27(7), 901 (2009)CrossRefADSGoogle Scholar
  47. 47.
    A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd edn. (McGraw Hill, New York, 1984)MATHGoogle Scholar
  48. 48.
    J.B. Thomas, An Introduction to Statistical Communication Theory (Wiley, New York, 1969)MATHGoogle Scholar
  49. 49.
    C.B. Collings, L. Boivin, IEEE Photon. Technol. Lett. 12(11), 1582 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.SiBEAMSunnyvaleUSA

Personalised recommendations