Power-Efficient Modulation Schemes

Chapter

Abstract

Coherent optical fiber communications had a brief period of popularity in the early 1990s, mainly because the optical links of that day were significantly power limited. Coherent detection provided a possibility of optically amplifying the signal to a power level that, after photodetection, made the thermal noise negligible. Two things, however, caused those coherent systems to be abandoned. The first was the sheer technical difficulties: a coherent receiver requires a local oscillator laser that is to be phase- and polarization-locked to the received signal. This gave rise to significant technical obstacles, and only a few limited and expensive coherent receiver solutions were demonstrated [17, 27]. The second was the development of the Erbium-doper fiber amplifier (EDFA) that provided an elegant and practical solution to the problem of the thermal noise. By 1995, the EDFA was a commodity in fiber communication systems, simple on-off keying modulation worked well enough, and coherent communication was forgotten.

References

  1. [1]
    E. Agrell, M. Karlsson, J. Lightwave Technol. 27(22), 5115–5126 (2009)CrossRefADSGoogle Scholar
  2. [2]
    E. Agrell, M. Karlsson, On the symbol error rate of regular polyhedra (2010). IEEE Trans. Inform. Theor., to appear, 2011Google Scholar
  3. [3]
    S. Benedetto, E. Biglieri, Principles of Digital Transmission: With Wireless Applications(Kluwer, New York, 1999)MATHGoogle Scholar
  4. [4]
    S. Benedetto, P. Poggiolini, IEEE Trans. Commun. 40(4), 708–721 (1992)CrossRefMATHGoogle Scholar
  5. [5]
    S. Betti, F. Curti, G. De Marchis, E. Iannone, Electron. Lett. 26(14), 992–993 (1990).CrossRefGoogle Scholar
  6. [6]
    S. Betti, F. Curti, G. De Marchis, E. Iannone, J. Lightwave Technol. 9(4), 514–523 (1991).CrossRefADSGoogle Scholar
  7. [7]
    S. Betti, G. De Marchis, E. Iannone, P. Lazzaro, J. Lightwave Technol. 9(10), 1314–1320 (1991).CrossRefADSGoogle Scholar
  8. [8]
    E. Biglieri, Advanced Modulation Formats for Satellite Communications, ed. by J. Hagenauer. Advanced Methods for Satellite and Deep Space Communications (Springer, Berlin, 1992) pp. 61–80Google Scholar
  9. [9]
    A. Bononi, M. Bertolini, P. Serena, G. Bellotti, J. Lightwave Technol. 27(18), 3974–3983 (2009).CrossRefADSGoogle Scholar
  10. [10]
    A. Bononi, P. Serena, N. Rossi, Opt. Fiber Technol. 16, 73–85 (2010)CrossRefADSGoogle Scholar
  11. [11]
    H. Bülow, Polarization QAM modulation (POL-QAM) for coherent detection schemes. Proceedings of optical fiber communication and national fiber optic engineers conference, OFC/NFOEC’09. Paper OWG2, 2009Google Scholar
  12. [12]
    G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, S. Bigo, Transmission of 40 Gb/s QPSK with coherent detection over ultra-long distance improved by nonlinearity mitigation. Proceedings of European conference on optical communications, ECOC’06. Paper PDP Th.4.3.6, 2006Google Scholar
  13. [13]
    G. Charlet, M. Salsi, J. Renaudier, O. Pardo, H. Mardoyan, S. Bigo, Electron. Lett. 43(20), 1109–1111 (2007).CrossRefGoogle Scholar
  14. [14]
    J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, 3rd edn. (Springer, New York, 1999)MATHGoogle Scholar
  15. [15]
    H.S.M. Coxeter, Regular Polytopes(Dover Publications, New York, 1973)Google Scholar
  16. [16]
    R. Cusani, E. Iannone, A. Salonico, M. Todaro, J. Lightwave Technol. 10(6), 777–786 (1992)CrossRefADSGoogle Scholar
  17. [17]
    F. Derr, Electron. Lett. 26(6), 401–403 (1990)CrossRefGoogle Scholar
  18. [18]
    N. Ekanayake, T. Tjhung, IEEE Trans. Inform. Theor. IT-28(4), 658–660 (1982)Google Scholar
  19. [19]
    R. Essiambre, G. Kramer, P. Winzer, G. Foschini, B. Goebel, J. Lightwave Technol. 28(4), 662–701 (2010)CrossRefADSGoogle Scholar
  20. [20]
    G. Foschini, R. Gitlin, S. Weinstein, IEEE Trans. Commun. 22(1), 28–38 (1974)CrossRefGoogle Scholar
  21. [21]
    J.P. Gordon, L.R. Walker, W.H. Louisell, Phys. Rev. 130(2), 806–812 (1963).CrossRefMATHADSMathSciNetGoogle Scholar
  22. [22]
    R.L. Graham, N.J.A. Sloane, Discrete Comput. Geom. 5(1), 1–11 (1990)CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    K.-P. Ho, Phase-Modulated Optical Communication Systems(Springer, New York, 2005)Google Scholar
  24. [24]
    E. Ip, A.P.T. Lau, D.J.F. Barros, J.M. Kahn, Opt. Express 16(2), 753–791 (2008); Opt. Express 16(26), 21943 (2008)Google Scholar
  25. [25]
    G. Jacobsen, Noise in Digital Optical Transmission Systems(Artech House Publishers, Boston, 1994)Google Scholar
  26. [26]
    J.M. Kahn, K.-P. Ho, IEEE J. Select. Top. Quant. Electron. 10(2), 259–272 (2004).CrossRefGoogle Scholar
  27. [27]
    J.M. Kahn, A.H. Gnauck, J.J. Veselka, S.K. Korotky, B.L. Kasper, IEEE Photon. Technol. Lett. 2(4), 285–287 (1990).CrossRefADSGoogle Scholar
  28. [28]
    M. Karlsson, E. Agrell, Opt. Express 17(13), 10814–10819 (2009)CrossRefGoogle Scholar
  29. [29]
    M. Karlsson, H. Sunnerud, J. Lightwave Technol. 24(11), 4127–4137 (2006)CrossRefADSGoogle Scholar
  30. [30]
    L. Kazovsky, S. Benedetto, A. Willner, Optical Fiber Communication Systems(Artech House Publishers, Boston, 1996)Google Scholar
  31. [31]
    K. Kikuchi, S. Tsukamoto, J. Lightwave Technol. 26(13), 1817–1822 (2008)CrossRefADSGoogle Scholar
  32. [32]
    H.G. Kim, 4-dimensional modulation for a bandlimited channel using Q2PSK. IEEE wireless communications and networking conference, WCNC, vol. 3, pp. 1144–1147, 1999Google Scholar
  33. [33]
    G. Lachs, IEEE Trans. Inform. Theor. 9(2), 95–97 (1963)CrossRefGoogle Scholar
  34. [34]
    D. Ly-Gagnon, K. Katoh, K. Kikuchi, Electron. Lett. 41(4), 206–207 (2005)CrossRefGoogle Scholar
  35. [35]
    O. Musin, Ann. Math. 168, 1–32 (2008)CrossRefMATHMathSciNetGoogle Scholar
  36. [36]
    J.R. Pierce, IEEE Trans. Commun. 26(12), 1819–1821 (1978)CrossRefMathSciNetGoogle Scholar
  37. [37]
    J.R. Pierce, IEEE Trans. Commun. COM-28(7), 1098–1099 (1980)Google Scholar
  38. [38]
    J.-E. Porath, T. Aulin, IEE Proc. Commun. 150(5), 317–323 (2003).CrossRefGoogle Scholar
  39. [39]
    J. Proakis, Digital Communications, 4th edn. (McGraw-Hill, Boston, 2001)Google Scholar
  40. [40]
    J. Renaudier, G. Charlet, M. Salsi, O. Pardo, H. Mardoyan, P. Tran, S. Bigo, J. Lightwave Technol. 26(1), 36–42 (2008)CrossRefADSGoogle Scholar
  41. [41]
    K. Roberts, M. O’Sullivan, K.T. Wu, H. Sun, A. Awadalla, D.J. Krause, C. Laperle, J. Lightwave Technol. 27(16), 3546–3559 (2009).CrossRefADSGoogle Scholar
  42. [42]
    D. Saha, T. Birdsall, IEEE Trans. Commun. 37(5), 437–448 (1989).CrossRefGoogle Scholar
  43. [43]
    C.E. Shannon, Proc. IRE 37(1), 10–21 (1949)CrossRefMathSciNetGoogle Scholar
  44. [44]
    C.E. Shannon, Bell Syst. Tech. J. 38(3), 611–656 (1959)MathSciNetGoogle Scholar
  45. [45]
    M. Simon, S. Hinedi, W. Lindsey, Digital Communication Techniques: Signal Design and Detection. (PTR, Prentice Hall, 1995)Google Scholar
  46. [46]
    N.J.A. Sloane, R.H. Hardin, T.S. Duff, J.H. Conway, Discrete Comput. Geom. 14(3), 237–259 (1995)CrossRefMATHMathSciNetGoogle Scholar
  47. [47]
    N.J.A. Sloane, R.H. Hardin, T.S. Duff, J.H. Conway, Minimal-energy clusters, library of 3-d clusters, library of 4-d clusters (1997). http://www.research.att.com/~njas/cluster/
  48. [48]
    N.J.A. Sloane, R.H. Hardin, T.S. Duff, J.H. Conway, Spherical codes, part 1 (2000). http://www.research.att.com/~njas/packings/
  49. [49]
    E. Specht, The best known packings of equal circles in the unit circle (2009). http://hydra.nat.uni-magdeburg.de/packing/cci/cci.html
  50. [50]
    K. Stephenson, Circle packing bibliography as of September 2005 (2005). http://www.math.utk.edu/~kens/CP-bib.pdf
  51. [51]
    H. Sun, K. Wu, K. Roberts, Opt. Express 16(2), 873–879 (2008)CrossRefADSGoogle Scholar
  52. [52]
    A.S. Tanenbaum, Computer Networks, 4th edn. (Pearson, Upper Saddle River, 2003)Google Scholar
  53. [53]
    G. Taricco, E. Biglieri, V. Castellani, Applicability of four-dimensional modulations to digital satellites: A simulation study. Proceedings of IEEE global telecommunications conference, vol. 4, pp. 28–34, 1993Google Scholar
  54. [54]
    S. Tsukamoto, D. Ly-Gagnon, K. Katoh, K. Kikuchi, Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission. Proceedings of optical fiber communication and national fiber optic engineers conference, OFC/NFOEC, vol. 6. Paper PDP 29, 2005Google Scholar
  55. [55]
    E.W. Weisstein, Ball, From Mathworld – a Wolfram Web Resource (2010). http://mathworld.wolfram.com/Ball.html
  56. [56]
    G. Welti, J. Lee, IEEE Trans. Inform. Theor. 20(4), 497–502 (1974)CrossRefMATHGoogle Scholar
  57. [57]
    M. Winter, C.A. Bunge, D. Setti, K. Petermann, J. Lightwave Technol. 27(17), 3739–3751 (2009)CrossRefADSGoogle Scholar
  58. [58]
    J. Wu, M.C. Wu, IEEE Trans. Vehicular Technol. 49(6), 2244–2256 (2000)CrossRefGoogle Scholar
  59. [59]
    L. Xiao, X. Dong, IEEE Trans. Wireless Commun. 4(4), 1418–1424 (2005)CrossRefGoogle Scholar
  60. [60]
    C. Xie, IEEE Photon. Technol. Lett. 21(5), 274 (2009)CrossRefADSGoogle Scholar
  61. [61]
    C. Xie, Opt. Express 17(6), 4815–4823 (2009)CrossRefADSGoogle Scholar
  62. [62]
    L. Zetterberg, H. Brändström, IEEE Trans. Commun. 25(9), 943–950 (1977)CrossRefMATHGoogle Scholar
  63. [63]
    H.Y. Song, S.W. Golomb, IEEE Trans. Inform. Theor. 40(2), 504–507 (1994)CrossRefMATHGoogle Scholar
  64. [64]
    M. Karlsson, E. Agrell, Four-dimensional optimized constellations for coherent optical transmission systems. Proceedings of the 36th European conference on Optical Communication, ECOC’10. Paper We.8.C.3, 2010Google Scholar
  65. [65]
    P. Serena, A. Vanucci, A. Bononi, The performance of polarization-wwitched QPSK (PS-QPSK) in dispersion managed WDM transmissions. Proceedings of the 36th European conference on Optical Communication, ECOC’10. Paper Th.10.E.2, 2010Google Scholar
  66. [66]
    P. Poggiolini, Opt. Express. 18(11), 11360–11371 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Photonics Laboratory, Department of Microtechnology and NanoscienceChalmers University of TechnologyGöteborgSweden
  2. 2.Communication Systems Group, Department of Signals and SystemsChalmers University of TechnologyGöteborgSweden

Personalised recommendations