Invertebrate Immunity pp 260-301

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 708)

Echinoderm Immunity

  • L. Courtney Smith
  • Julie Ghosh
  • Katherine M. Buckley
  • Lori A. Clow
  • Nolwenn M. Dheilly
  • Tor Haug
  • John H. Henson
  • Chun Li
  • Cheng Man Lun
  • Audrey J. Majeske
  • Valeria Matranga
  • Sham V. Nair
  • Jonathan P. Rast
  • David A. Raftos
  • Mattias Roth
  • Sandro Sacchi
  • Catherine S. Schrankel
  • Klara Stensvåg

Abstract

A survey for immune genes in the genome for the purple sea urchin has shown that the immune system is complex and sophisticated. By inference, immune responses of all echinoderms may be similar. The immune system is mediated by several types of coelomocytes that are also useful as sensors of environmental stresses. There are a number of large gene families in the purple sea urchin genome that function in immunity and of which at least one appears to employ novel approaches for sequence diversification. Echinoderms have a simpler complement system, a large set of lectin genes and a number of antimicrobial peptides. Profiling the immune genes expressed by coelomocytes and the proteins in the coelomic fluid provide detailed information about immune functions in the sea urchin. The importance of echinoderms in maintaining marine ecosystem stability and the disastrous effects of their removal due to disease will require future collaborations between ecologists and immunologists working towards understanding and preserving marine habitats.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hyman LH. The Invertebrates: Echinodermata, The coelomate Bilateria. Vol IV. New Yok: McGraw-Hill, 1955.Google Scholar
  2. 2.
    Ebert TA. Negative Growth and longevity in the purple sea urchin Strongylocentrotus purpuratus (Stimpson). Science 1967; 157(3788):557–558.PubMedGoogle Scholar
  3. 3.
    Metchnikoff E. Lectures on the comparative pathology of inflammation: delivered at the Pasteur Institute in 1891: Kegan Paul, Trench, Trubner and Co. Ltd.; 1893.Google Scholar
  4. 4.
    Hildemann WH, Dix TG. Transplantation reactions of tropical Australian echinoderms. Transplantation 1972; 14(5):624–633.PubMedGoogle Scholar
  5. 5.
    Karp RD, Hildemann WH. Specific allograft reactivity in the sea star Dermasterias imbricata. Transplantation 1976; 22(5):434–439.PubMedGoogle Scholar
  6. 6.
    Coffaro KA. Memory and specificity in the sea urchin Lytechinus pictus [Doctoral Dissertation]. Santa Cruz, University of California; 1979.Google Scholar
  7. 7.
    Karp RD, Coffaro KA. Cellular defense systems of the Echinodermata. In: Manning ED, ed. Phylogeny of Immunological Memory. Amsterdam, The Netherlands: Elsevier/North Holland, 1980:257–282.Google Scholar
  8. 8.
    Coffaro KA, Hinegardner RT. Immune response in the sea urchin Lytechinus pictus. Science 1977; 197(4311):1389–1390.PubMedGoogle Scholar
  9. 9.
    Smith LC, Davidson EH. The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes. Immunol Today 1992; 13(9):356–362.PubMedGoogle Scholar
  10. 10.
    Hibino T, Loza-Coll M, Messier C et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 2006; 300:349–365.PubMedGoogle Scholar
  11. 11.
    Sodergren E, Weinstock GM, Davidson EH et al. The genome of the sea urchin, Strongylocentrotus purpuratus. Science 2006; 314(5801):941–952.PubMedGoogle Scholar
  12. 12.
    Smith LC. Host responses to bacteria: innate immunity in invertebrates. In: McFall-Ngai M, Ruby N, Henderson B, eds. The Influence of Cooperative Bacteria on Animal Host Biology. Advances in Molecular and Cellular Microbiology, vol. 10. Cambridge: Cambridge University Press, 2005:293–320.Google Scholar
  13. 13.
    Castillo MG, Goodson MS, McFall-Ngai M. Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes. Dev Comp Immunol 2008; 33(1):69–76.Google Scholar
  14. 14.
    Geddes P. On the coalescence of amoeboid cells in plasmodia and on the so called coagulation of invertebrate fluids. Proc Royal Soc London 1880; (30):252–255.Google Scholar
  15. 15.
    Kindred JE. The cellular elements in the perivisceral fluid of echinoderms. Biol Bull 1924; (47):228–251.Google Scholar
  16. 16.
    Boolootian RA, Geise CA. Coelomic corpuscles of echinoderms. Biol Bull 1958; 15:53–56.Google Scholar
  17. 17.
    Johnson PT. The coelomic elements of sea urchins (Strongylocentrotus). I. The normal coelomocytes; their morphology and dynamics in hanging drops. J Invertebr Pathol 1969; 13:25–41.PubMedGoogle Scholar
  18. 18.
    Gross PS, Al-Sharif WZ, Clow LA et al. Echinoderm immunity and the evolution of the complement system. Dev Comp Immunol 1999; 23(4-5):429–442.PubMedGoogle Scholar
  19. 19.
    Smith LC, Rast JP, Brockton V et al. The sea urchin immune system. Invertebrate Survival Journal 2006; 3:25–39.Google Scholar
  20. 20.
    Matranga V, Pinsino A, Celi M et al. Impacts of UV-B radiation on short term cultures of sea urchin coelomocytes. Mar Biol 2006; 149(1):24–34.Google Scholar
  21. 21.
    Matranga V, Pinsino A, Celi M et al. Monitoring chemical and physical stress using sea urchin immune cells. Prog Mol Subcell Biol 2005; 39:85–110.PubMedGoogle Scholar
  22. 22.
    Smith VJ. The Echinoderms. In: Ratcliffe NA, Rowley AF, eds. Invertebrate Blood Cells. New York, NY: Academic Press; 1981:513–562.Google Scholar
  23. 23.
    Edds KT. Dynamic aspects of filopodial formation by reorganization of microfilaments. J Cell Biol 1977; 73(2):479–491.PubMedGoogle Scholar
  24. 24.
    Edds KT. Cell biology of echinoid coelomocytes. J Invertebr Pathol 1993; 61:173–178.Google Scholar
  25. 25.
    Henson JH, Kolnik SE, Fried CA et al. Actin-based centripetal flow: phosphatase inhibition by calyculin-A alters flow pattern, actin organization and actomyosin distribution. Cell Motil Cytoskeleton 2003; 56(4):252–266.PubMedGoogle Scholar
  26. 26.
    Henson JH, Nesbitt D, Wright BD et al. Immunolocalization of kinesin in sea urchin coelomocytes. Association of kinesin with intracellular organelles. J Cell Sci 1992; 103 (Pt 2):309–320.PubMedGoogle Scholar
  27. 27.
    Henson JH, Svitkina TM, Burns AR et al. Two components of actin-based retrograde flow in sea urchin coelomocytes. Mol Biol Cell 1999; 10(12):4075–4090.PubMedGoogle Scholar
  28. 28.
    Gross PS, Clow LA, Smith LC. SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics 2000; 51(12):1034–1044.PubMedGoogle Scholar
  29. 29.
    Brockton V, Henson JH, Raftos DA et al. Localization and diversity of 185/333 proteins from the purple sea urchin—unexpected protein-size range and protein expression in a new coelomocyte type. J Cell Sci 2008; 121(3):339–348.PubMedGoogle Scholar
  30. 30.
    Henson JH, Schatten G. Calcium regulation of the actin-mediated cytoskeletal transformation of sea urchin coelomocytes. Cell Motil 1983; 3(5-6):525–534.PubMedGoogle Scholar
  31. 31.
    Bertheussen K. The cytotixic reaction in allogeneic mixtures of echinoid phagocytes. Exp Cell Res 1979; 120:373–381.PubMedGoogle Scholar
  32. 32.
    Johnson PT. The coelomic elements of the sea urchins (Strongylocentrotus) III. In vitro reaction to bacteria. J Invertebr Pathol 1969; 13:42–62.PubMedGoogle Scholar
  33. 33.
    Service M, Wardlaw AC. Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus (L). Comp Biochem Physiol Biochem Mol Biol 1984; 79(2):161–165.Google Scholar
  34. 34.
    Gerardi P, Lassegues M, Canicatti C. Cellular distribution of sea urchin antibacterial activity. Biol Cell 1990; 70(3): 153–157.Google Scholar
  35. 35.
    Huang Y, Krein PM, Muruve DA et al. Complement factor B gene regulation: synergistic effects of TNF-alpha and IFN-gamma in macrophages. J Immunol 2002; 169(5):2627–2635.PubMedGoogle Scholar
  36. 36.
    Heatfield BM, Travis DF. Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. II. Cells with spherules. J Morphol 1975; 145:51–72.PubMedGoogle Scholar
  37. 37.
    Hobaus E. Coelomocytes in normal and pathologically altered body walls of sea urchins. Paper presented at: Proceedings of the European Colloquium on Echinoderms, 1979:247–249.Google Scholar
  38. 38.
    Arizza V, Giaramita FT, Parrinello D et al. Cell cooperation in coelomocyte cytotoxic activity of Paracentrotus lividus coelomocytes. Comp Biochem Physiol A Comp Physiol 2007; 147(2):389–394.Google Scholar
  39. 39.
    Bertheussen K, Seljelid R. Echinoid phagocytes in vitro. Exp Cell Res 1978; 111(2):401–412.PubMedGoogle Scholar
  40. 40.
    Xing J, Yang HS, Chen MY. Morphological and ultrastructural characterization of the coelomocytes in Apostichopus japonicus. Aquat Biol 2008; 2:85–92.Google Scholar
  41. 41.
    Coteur G, DeBecker G, Warnau M et al. Differentiation of immune cells challenged by bacteria in the common European starfish, Asterias rubens (Echinodermata). Eur J Cell Biol 2002; 81(7):413–418.PubMedGoogle Scholar
  42. 42.
    Holm K, Hernroth B, Thorndyke M. Coelomocyte numbers and expression of HSP70 in wounded sea stars during hypoxia. Cell Tissue Res 2008; 334(2):319–325.PubMedGoogle Scholar
  43. 43.
    Hetzel HR. Studies on holothurian coelomocytes. II. The origin of coelomocytes and the formation of brown bodies. Biol Bull 1965; 128(1):102–111.Google Scholar
  44. 44.
    Canicatti C, Quaglia A. Ultrastructure of Holothuria polii encapsulating body. J Zool 1991; 224(3):419–429.Google Scholar
  45. 45.
    Dybas L, Fankboner PV. Holothurian survival strategies: mechanisms for the maintenance of a bacteriostatic environment in the coelomic cavity of the sea cucumber, Parastichopus californicus. Dev Comp Immunol 1986; 10(3):311–330.PubMedGoogle Scholar
  46. 46.
    Pagliara P, Camevali C, Burighel P et al. The spherule cells of Holothuria polii Delle Chiaie, 1823 (Aspidochirota, Holothuroidea) during brown body formation: an ultrastructural study. J Submicrosc Cytol Pathol 2003; 35(3):295–301.PubMedGoogle Scholar
  47. 47.
    Jans D, Dubois P, Jangoux M. Defensive mechanisms of holothuroids (Echinodermata): Formation, role and fate of intracoelomic brown bodies in the sea cucumber Holothuria tubulosa. Cell Tissue Res 2005; (283):99–106.Google Scholar
  48. 48.
    Canicatti C, Rizzo A. A 220 kDa coelomocyte aggregating factor involved in Holothuria polii cellular clotting. Eur J Cell Biol 1991; 56:79–83.PubMedGoogle Scholar
  49. 49.
    Nair SV, Del Valle H, Gross PS et al. Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics 2005; 22(1):33–47.PubMedGoogle Scholar
  50. 50.
    Hillier BJ, Vacquier VD. Amassin, an olfactomedin protein, mediates the massive intercellular adhesion of sea urchin coelomocytes. J Cell Biol 2003; 160(4):597–604.PubMedGoogle Scholar
  51. 51.
    Hillier BJ, Moy GW, Vacquier VD. Diversity of olfactomedin proteins in the sea urchin. Genomics 2007; 89(6):721–730.PubMedGoogle Scholar
  52. 52.
    Ramirez-Gomez F, Ortiz-Pineda PA, Rojas-Cartagena C et al. Immune-related genes associated with intestinal tissue in the sea cucumber Holothuria glaberrima. Immunogenetics 2008; 60(1):57–71.PubMedGoogle Scholar
  53. 53.
    Ramirez-Gomez F, Ortiz-Pineda PA, Rivera-Cardona G et al. LPS-induced genes in intestinal tissue of the sea cucumber Holothuria glaberrima. PLoS One 2009; 4(7):e6178.PubMedGoogle Scholar
  54. 54.
    Santiago-Cardona PG, Berrios CA, Ramirez F et al. Lipopolysaccharides induce intestinal serum amyloid A expression in the sea cucumber Holothuria glaberrima. Dev Comp Immunol 2003; 27(2): 105–110.PubMedGoogle Scholar
  55. 55.
    Ortiz-Pineda PA, Ramirez-Gomez F, Perez-Ortiz J et al. Gene expression profiling of intestinal regeneration in the sea cucumber. BMC Genomics 2009; 10:262.PubMedGoogle Scholar
  56. 56.
    Takeda K, Kaisho T, Akira S. Toll-like receptors. Annual Review of Immunology 2003; 21:335–376.PubMedGoogle Scholar
  57. 57.
    Beutler B, Rehli M. Evolution of the TIR, Tolls and TLRs: functional inferences from computational biology. Curr Top Microbiol Immunol 2002; 270:1–21.PubMedGoogle Scholar
  58. 58.
    Leulier F, Lemaitre B. Toll-like receptors—taking an evolutionary approach. Nat Rev Genet 2008; 9:165–178.PubMedGoogle Scholar
  59. 59.
    Rock FL, Hardiman G, Timans JC et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 1998; 95(2):588–583.PubMedGoogle Scholar
  60. 60.
    Messier-Solek C, Buckley KM, Rast JP. Highly diversificied innate receptor systems and new forms of animal immunity. Semin Immunol 2010; 22(1):39–47.PubMedGoogle Scholar
  61. 61.
    Roach JC, Glusman G, Rowen L et al. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 2005; 102(27):9577–9582.PubMedGoogle Scholar
  62. 62.
    Franchi L, Warner N, Viani K et al. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 2009; 227(1): 106–128.PubMedGoogle Scholar
  63. 63.
    Brodsky IE, Monack D. NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 2009; 21(4):199–207.PubMedGoogle Scholar
  64. 64.
    Schmucker D, Chen B. Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes Dev 2009; 23:147–156.PubMedGoogle Scholar
  65. 65.
    Huang S, Yuan S, Guo L et al. Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res 2008; 18(7):1112–1126.PubMedGoogle Scholar
  66. 66.
    Buckley KM, Smith LC. Extraordinary diversity among members of the large gene family, 185/333, from the purple sea urchin, Strongylocentrotus purpuratus. BMC Mol Biol 2007; 8:68.PubMedGoogle Scholar
  67. 67.
    Terwilliger DP, Buckley KM, Brockton V et al. Distinctive expression patterns of 185/333 genes in the purple seaurchin, Strongylocentrotus purpuratus: an unexpectedly diverse family of transcripts in response to LPS, beta-1,3-glucan and dsRNA. BMC Mol Biol 2007; 8:16.PubMedGoogle Scholar
  68. 68.
    Terwilliger DP, Buckley KM, Mehta D et al. Unexpected diversity displayed in cDNAs expressed by the immune cells of the purple sea urchin, Strongylocentrotus purpuratus. Physiol Genomics 2006; 26(2): 134–144.PubMedGoogle Scholar
  69. 69.
    Buckley KM, Munshaw S, Kepler TB et al. The 185/333 gene family is a rapidly diversifying host-defense gene cluster in the purple sea urchin, Strongylocentrotus purpuratus. J Mol Biol 2008; 379:912–928.PubMedGoogle Scholar
  70. 70.
    Ghosh JG, Buckley KM, Nair SV et al. Spl85/333: A novel family of genes and proteins involved in the purple sea urchin immune response. Dev Comp Immunol 2010; 34(3):235–245.PubMedGoogle Scholar
  71. 71.
    Britten RJ, Cetta A, Davidson EH. The single-copy DNA sequence polymorphism of the sea urchin Strongylocentrotus purpuratus. Cell 1978; 15(4):1175–1186.PubMedGoogle Scholar
  72. 72.
    Buckley KM, Terwilliger DP, Smith LC. Sequence variations between the 185/333 genes and messages from the purple sea urchin suggest posttranscriptional modifications. J Immunol 2008; 181(12):2203–2212.Google Scholar
  73. 73.
    Majewski J, Ott J. GT repeats are associated with recombination on human chromosome 22. Genome Res 2000; 10(8):1108–1114.PubMedGoogle Scholar
  74. 74.
    Rogaev EI. Simple human DNA-repeats associated with genomic hypervariability, flanking the genomic retroposons and similar to retroviral sites. Nucleic Acids Res 1990; 18(7):1879–1885.PubMedGoogle Scholar
  75. 75.
    Boothroyd CE, Dreesen O, Leonova T et al. A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature 2009; 459(7244):278–281.PubMedGoogle Scholar
  76. 76.
    McDowell JM, Simon SA. Molecular diversity at the plant-pathogen interface. Dev Comp Immunol 2008; 32(7):736–744.PubMedGoogle Scholar
  77. 77.
    Hamilton CE, Papavasiliou FN, Rosenberg BR. Diverse functions for DNA and RNA editing in the immune system. RNA Biol 2010;7(2):in press.Google Scholar
  78. 78.
    Rast JP, Smith LC, Loza-Coll M et al. Genomic insights into the immune system of the sea urchin. Science 2006;314(5801):952–956.PubMedGoogle Scholar
  79. 79.
    Kunkel TA, Bebenek K. DNA replication fidelity. Annu Rev Biochem 2000; 69:497–529.PubMedGoogle Scholar
  80. 80.
    Ruiz JF, Dominguez O, Lain de Lera T et al. DNA polymerase mu, a candidate hypermutase? Philos Trans R Soc Lond B Biol Sci 2001; 356(1405):99–109.PubMedGoogle Scholar
  81. 81.
    Dheilly NM, Nair SV, Smith LC et al. Highly variable immune response proteins from the sea urchin, Strongylocentrotus purpuratus: proteomic analysis of diversity within and between individuals. J Immunol 2009; 182:2203–2212.PubMedGoogle Scholar
  82. 82.
    Volanakis JE. Overview of the complement system. In: Volonakis JE, Frank MM, eds. The Human Complement System in Health and Disease. Vol 20. New York: Marcel Dekker; 1998:9–23.Google Scholar
  83. 83.
    Lambris JD, Ricklin D, Geisbrecht BV. Complement evasion by human pathogens. Nat Rev Microbiol 2008;6(2):132–142.PubMedGoogle Scholar
  84. 84.
    Dempsey PW, Allison ME, Akkaraju S et al. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 1996; 271(5247):348–350.PubMedGoogle Scholar
  85. 85.
    Kaplan G, Bertheussen K. The morphology of echinoid phagocytes and mouse peritoneal macrophages during phagocytosis in vitro. Scand J Immunol 1977; 6(12):1289–1296.PubMedGoogle Scholar
  86. 86.
    Bertheussen K. Endocytosis by echinoid phagocytes in vitro. II. Mechanisms of endocytosis. Dev Comp Immunol 1981; 5(4):557–564.PubMedGoogle Scholar
  87. 87.
    Bertheussen K. Receptors for complement on echinoid phagocytes. II. Purified human complement mediates echinoid phagocytosis. Dev Comp Immunol 1982; 6(4):635–642.PubMedGoogle Scholar
  88. 88.
    Smith LC, Chang L, Britten RJ et al. Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. Complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes. J Immunol 1996; 156(2):593–602.PubMedGoogle Scholar
  89. 89.
    Smith LC, Shih CS, Dachenhausen SG. Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system. J Immunol. 1998; 161(12):6784–6793.PubMedGoogle Scholar
  90. 90.
    Al-Sharif WZ, Sunyer JO, Lambris JD et al. Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol 1998; 160(6):2983–2997.PubMedGoogle Scholar
  91. 91.
    Clow LA, Gross PS, Shih CS et al. Expression of SpC3, the sea urchin complement component, in response to lipopolysaccharide. Immunogenetics 2000; 51(12): 1021–1033.PubMedGoogle Scholar
  92. 92.
    Shah M, Brown KM, Smith LC. The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria. Dev Comp Immunol 2003; 27(6-7):529–538.PubMedGoogle Scholar
  93. 93.
    Smith LC. Thioester function is conserved in SpC3, the sea urchin homologue of the complement component C3. Dev Comp Immunol 2002; 26(7):603–614.PubMedGoogle Scholar
  94. 94.
    Sim RB, Sim E. Autolytic fragmentation of complement components C3 and C4 and its relationship to covalent binding activity. Ann N Y Acad Sci 1983; 421:259–276.PubMedGoogle Scholar
  95. 95.
    Clow LA, Raftos DA, Gross PS et al. The sea urchin complement homologue, SpC3, functions as an opsonin. J Exp Biol 2004; 207(Pt 12):2147–2155.PubMedGoogle Scholar
  96. 96.
    Nakao M, Fushitani Y, Fujiki K et al. Two diverged complement factor B/C2-like cDNA sequences from ateleost, the common carp (Cyprinus carpio). J Immunol 1998; 161(9):4811–4818.PubMedGoogle Scholar
  97. 97.
    Terwilliger DP, Clow LA, Gross PS et al. Constitutive expression and alternative splicing of the exons encoding SCRs in Sp152, the sea urchin homologue of complement factor B. Implications on the evolution of the Bf/C2 gene family. Immunogenetics 2004; 56(7):531–543.PubMedGoogle Scholar
  98. 98.
    Kimura A, Sakaguchi E, Nonaka M. Multi-component complement system of Cnidaria: C3, Bf and MASP genes expressed in the endodermal tissues of a sea anemone, Nematostella vectensis. Immunobiology 2009; 214(3):165–178.PubMedGoogle Scholar
  99. 99.
    Lachman PJ. An evolutionary view of the complement system. Behring Inst. Mitt 1979; 63:25–37.Google Scholar
  100. 100.
    Bentley DR. Structural superfamilies of the complement system. Exp Clin Immunogenet 1988; 5(2-3):69–80.PubMedGoogle Scholar
  101. 101.
    Smith LC, Azumi K, Nonaka M. Complement systems in invertebrates. The ancient alternative and lectin pathways. Immunopharmacology 1999; 42(1-3):107–120.PubMedGoogle Scholar
  102. 102.
    Smith LC, Clow LA, Terwilliger DP. The ancestral complement system in sea urchins. Immunol Rev 2001; 180:16–34.PubMedGoogle Scholar
  103. 103.
    Dodd RB, Drickamer K. Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 2001; 11(5):71R–79R.PubMedGoogle Scholar
  104. 104.
    Vasta GR, Ahmed H, Tasumi S et al. Biological Roles of lectins in innate immunity: molecular and structural basis for diversity and self nonself recognition. Adv Exp Med Biol 2007; 598:389–406.PubMedGoogle Scholar
  105. 105.
    Goldstein IJ, Hughes RC, Monsigny M et al. What should be called a lectin? Nature 1980; 285(5760):66–66.Google Scholar
  106. 106.
    Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2002; 2:185–194.PubMedGoogle Scholar
  107. 107.
    Takahashi H, Komano H, Kawaguchi N et al. Cloning and sequencing of cDNA of Sarcophaga peregrina humoral lectin induced on injury of the body wall. J Biol Chem 1985; 260(22): 12228–12233.PubMedGoogle Scholar
  108. 108.
    Giga Y, Ikai A, Takahashi K. The complete amino acid sequence of echinoidin, a lectin from the coelomic fluid of the sea urchin Anthocidaris crassispina. Homologies with mammalian and insect lectins. J Biol Chem 1987; 262(13):6197–6203.PubMedGoogle Scholar
  109. 109.
    Muramoto K, Kamiya H. The amino-acid sequence of multiple lectins of the acorn barnacle Megabalanus rosa and its homology with animal lectins. Biochim Biophys Acta 1990; 1039(1):42–51.PubMedGoogle Scholar
  110. 110.
    Suzuki T, Takagi T, Furukohri T et al. A calcium-dependent galactose-binding lectin from the tunicate Polyandrocarpa misakiensis. Isolation, characterization and amino acid sequence. J Biol Chem 1990; 265(3):1274–1281.PubMedGoogle Scholar
  111. 111.
    Hirabayashi J, Satoh M, Kasai K. Evidence that Caenorhabditis elegans 32-kDa beta-galactoside-binding protein is homologous to vertebrate beta-galactoside-binding lectins. cDNA cloning and deduced amino acid sequence. J Biol Chem 1992; 267(22):15485–15490.PubMedGoogle Scholar
  112. 112.
    Pfeifer K, Haasemann M, Gamulin V et al. S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 1993; 3(2): 179–184.PubMedGoogle Scholar
  113. 113.
    Elola MT, Vasta GR. Lectins from the colonial tunicate Clavelina picta are structurally related to acute-phase reactants from vertebrates. Ann N Y Acad Sci 1994; 712:321–323.PubMedGoogle Scholar
  114. 114.
    Armstrong PB, Swarnakar S, Srimal S et al. A cytolytic function for a sialic acid-binding lectin that is a member of the pentraxin family of proteins. J Biol Chem 1996; 271(25): 14717–14721.PubMedGoogle Scholar
  115. 115.
    Saito T, Hatada M, Iwanaga S et al. A newly identified horseshoe crab lectin with binding specificity to O-antigen of bacterial lipopolysaccharides. J Biol Chem 1997; 272(49):30703–30708.PubMedGoogle Scholar
  116. 116.
    Drickamer K, Fadden AJ. Genomic analysis of C-type lectins. Biochem Soc Symp 2002 (69):59–72.Google Scholar
  117. 117.
    Vijayan M, Chandra N. Lectins. Curr Opin Struct Biol 1999; 9(6):707–714.PubMedGoogle Scholar
  118. 118.
    Bulgakov AA, Eliseikina MG, Petrova IY et al. Molecular and biological characterization of a mannan-binding lectin from the holothurian Apostichopus japonicus. Glycobiology 2007; 17(12):1284–1298.PubMedGoogle Scholar
  119. 119.
    Ikeda K, Sannoh T, Kawasaki N et al. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem 1987; 262(16):7451–7454.PubMedGoogle Scholar
  120. 120.
    Endo Y, Takahashi M, Nakao M et al. Two lineages of mannose-binding lectin-associated serine protease (MASP) in vertebrates. J Immunol 1998; 161(9):4924–4930.PubMedGoogle Scholar
  121. 121.
    Stahl PD, Ezekowitz RA. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 1998; 10(1):50–55.PubMedGoogle Scholar
  122. 122.
    Zhang Y, Suankratay C, Zhang XH et al. Lysis via the lectin pathway of complement activation: minireview and lectin pathway enhancement of endotoxin-initiated hemolysis. Immunopharmacology 1999; 42(1-3):81–90.PubMedGoogle Scholar
  123. 123.
    Sasaki H, Aketa K. Purification and distribution of a lectin in sea urchin (Anthocidaris crassispina) egg before and after fertilization. Exp Cell Res 1981; 135(1): 15–19.PubMedGoogle Scholar
  124. 124.
    Multerer KA, Smith LC. Two cDNAs from the purple sea urchin, Strongylocentrotus purpuratus, encoding mosaic proteins with domains found in factor H, factor I and complement components C6 and C7. Immunogenetics 2004; 56(2):89–106.PubMedGoogle Scholar
  125. 125.
    Pancer Z. Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin. Proc Natl Acad Sci USA 2000; 97(24):13156–13161.PubMedGoogle Scholar
  126. 126.
    Pancer Z, Rast JP, Davidson EH. Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes. Immunogenetics 1999; 49(9):773–786.PubMedGoogle Scholar
  127. 127.
    Bikker FJ, Ligtenberg AJ, End C et al. Bacteria binding by DMBT1/SAG/gp-340 is confined to the VEVLXXXXW motif in its scavenger receptor cysteine-rich domains. J Biol Chem 2004; 279(46):47699–47703.PubMedGoogle Scholar
  128. 128.
    Rosenstiel P, Sina C, End C et al. Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion. J Immunol 2007; 178(12):8203–8211.PubMedGoogle Scholar
  129. 129.
    Boman HG. Peptide antibiotics and their role in innate immunity. Ann. Rev. Immunol 1995; 13:61–92.Google Scholar
  130. 130.
    Hancock JM, Simon M. Simple sequence repeats in proteins and their significance for network evolution. Gene 2005; 345(1):113–118.PubMedGoogle Scholar
  131. 131.
    Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415(6870):389–395.PubMedGoogle Scholar
  132. 132.
    Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev 2006; 19(3):491–511.PubMedGoogle Scholar
  133. 133.
    Steiner H, Hultmark D, Engström Å et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981; 292:246–248.PubMedGoogle Scholar
  134. 134.
    Selsted ME, Brown DM, DeLange RJ et al. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem 1983; 258(23):14485–14489.PubMedGoogle Scholar
  135. 135.
    Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 2009; 37:D933–D937.PubMedGoogle Scholar
  136. 136.
    Scott MG, Hancock RE. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol 2000; 20(5):407–431.PubMedGoogle Scholar
  137. 137.
    Bradshaw JP. Cationic antimicrobial peptides. Issues for potential clinical use. Biodrugs 2003; 17(4):233–240.PubMedGoogle Scholar
  138. 138.
    Lehrer RI, Ganz T. Endogenous vertebrate antibiotics. Defensins, protegrins and other cysteine-rich antimicrobial peptides. Ann N Y Acad Sci 1996; 797:228–239.PubMedGoogle Scholar
  139. 139.
    Rinehart J, K.L. Marine natural products as sources of antiviral, antimicrobial and dybasantineoplastic agents. Pure Appl Chem 1981; (53):795–817.Google Scholar
  140. 140.
    Bryan PJ, Rittschof D, McClintock JB. Bioactivity of echinoderm ethanolic body-wall extracts: an assessment of marine bacterial attachment and macroinvertebrate larval settlement. J Exp Mar Bio Ecol 1996; 196(1-2):79–96.Google Scholar
  141. 141.
    Andersson L, Bohlin L, Iorizzi M et al. Biological activity of saponins and saponin-like compounds from starfish and brittle-stars. Toxicon 1989; 27(2):179–188.PubMedGoogle Scholar
  142. 142.
    Chludil HD, Seldes AM, Maier MS. Antifungal steroidal glycosides from the Patagonian starfish Anasterias minuta: Structure-activity correlations. J Nat Prod 2002; 65(2):153–157.PubMedGoogle Scholar
  143. 143.
    Levina EV, Kalinovsky AI, Dmitrenok PV. Steroid compounds from two pacific starfish of the genus Evasterias. Russ J Bioorganic Chem 2009; 35(1):123–130.Google Scholar
  144. 144.
    Kuwahara R, Hatate H, Yuki T et al. Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina. Lwt-Food Science and Technology 2009; 42(7):1296–1300.Google Scholar
  145. 145.
    Canicatti C, Roch P. Studies on Holothuria polii (Echinodermata) antibacterial proteins. I. Evidence for and activity of coelomocyte lysozyme. Experientia 1989; 45(8):756–759.Google Scholar
  146. 146.
    Canicatti C, Pagliara P, Stabili L. Sea urchin coelomic fluid agglutinin mediates coelomocyte adhesion. Eur J Cell Biol 1992; 58(2):291–295.PubMedGoogle Scholar
  147. 147.
    Shimizu M, Kohno S, Kagawa H et al. Lytic activity and biochemical properties of lysozyme in the coelomic fluid of the sea urchin Strongylocentrotus intermedius. J Invertebr Pathol 1999; 73(2):214–222.PubMedGoogle Scholar
  148. 148.
    Johnson PT. Infection with diatoms and other microorganisms in the sea urchin spines (Strongylocentrotus fanciscanus). J Invertebr Pathol 1970; 16:268–276.Google Scholar
  149. 149.
    Schillaci D, Arizza V, Parrinello N et al. Antimicrobial and antistaphylococcal biofilm activity from the sea urchin Paracentrotus lividus. J Appl Microbiol 2010, 108(1): 17–24.PubMedGoogle Scholar
  150. 150.
    Maltseva AL, Aleshina GM, Kokryakov VN et al. Diversity of antimicrobial peptides in acidic extracts from coelomocytes of starfish Asterias rubens L. IzdatlIstvo Sankt-Peterburgskogo Universiteta 2007; 1:85–94.Google Scholar
  151. 151.
    Maltseva AL, Aleshina GM, Kokryakov VN et al. New antimicrobial peptides from coelomocytes of sea star Asterias rubens L. Biologiya 2004; 4:101–108.Google Scholar
  152. 152.
    Haug T, Kjuul AK, Styrvold OB et al. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea) and Asterias rubens (Asteroidea). J Invertebr Pathol 2002; 81(2):94–102.PubMedGoogle Scholar
  153. 153.
    Li C, Haug T, Styrvold OB et al. Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 2008; 32(12):1430–1440.PubMedGoogle Scholar
  154. 154.
    Li C, Blencke H-M, Smith LC et al. Two recombinant peptides, SpStrongylocins 1 and 2, from Strongylocentrotus purpuratus, show antimicrobial activity against Gram-positive and Gram-negative bacteria. Dev Comp Immunol 2010; 34:286–292.PubMedGoogle Scholar
  155. 155.
    Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol 2005; 6(6):551–557.PubMedGoogle Scholar
  156. 156.
    Daher KA, Selsted ME, Lehrer RI. Direct inactivation of viruses by human granulocyte defensins. J Virol 1986; 60(3):1068–1074.PubMedGoogle Scholar
  157. 157.
    Mandal M, Nagaraj R. Antibacterial activities and conformations of synthetic alpha-defensin HNP-1 and analogs with one, two and three disulfide bridges. J Pept Res 2002; 59(3):95–104.PubMedGoogle Scholar
  158. 158.
    Inouye M. Intramolecular chaperone: the role of the pro-peptide in protein folding. Enzyme 1991; 45(5-6):314–321.PubMedGoogle Scholar
  159. 159.
    Lemaitre B, Nicolas E, Michaut L et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86(6):973–983.PubMedGoogle Scholar
  160. 160.
    Reichhart JM, Achstetter T. Expression and secretion of insect immune peptides in yeast. Res Immunol 1990; 141(9):943–946.PubMedGoogle Scholar
  161. 161.
    Beauregard KA, Truong NT, Zhang H et al. The detection and isolation of a novel antimicrobial peptide from the echinoderm, Cucumaria frondosa. Adv Exp Med Biol 2001; 484:55–62.PubMedGoogle Scholar
  162. 162.
    Chludil HD, Muniain CC, Seldes AM et al. Cytotoxic and antifungal triterpene glycosides from the Patagonian sea cucumber Hemoiedema spectabilis. J Nat Prod 2002; 65(6):860–865.PubMedGoogle Scholar
  163. 163.
    Chludil HD, Seldes AM, Maier MS. Antifungal steroidal glycosides from the patagonian starfish anasteriasminuta: structure-activity correlations. J Nat Prod 2002; 65(2): 153–157.PubMedGoogle Scholar
  164. 164.
    Lee J, Wang W, Hong J et al. A new 2.3-dimethyl butenolide from the brittle star Ophiomastix mixta. Chem Pharm Bull 2007; 55:459–461.PubMedGoogle Scholar
  165. 165.
    Rast JP, Pancer Z, Davidson EH. New approaches towards an understanding of deuterostome immunity. Curr Top Microbiol Immunol 2000; 248:3–16.PubMedGoogle Scholar
  166. 166.
    Beck G, Ellis TW, Habicht GS et al. Evolution of the acute phase response: iron release by echinoderm (Asterias forbesi) coelomocytes and cloning of an echinoderm ferritin molecule. Dev Comp Immunol 2002; 26(1):11–26.PubMedGoogle Scholar
  167. 167.
    García-Arrarás JE, Schenk C, Rodrígues-Ramírez R et al. Spherulocytes in the echinoderm Holothuria glaberrima and their involvement in intestinal regeneration. Dev Dyn 2006; 235(12):3259–3267.PubMedGoogle Scholar
  168. 168.
    Candia-Carnevali MD, Thorndyke MC, Matranga V. Regenerating echinoderms: a promise to understand stem cells potential. In: Rinkevich B, Matranga V, eds. Stem Cells in Marine Organisms: Springer; 2009:165–186.Google Scholar
  169. 169.
    Pinsino A, Thorndyke MC, Matranga V. Coelomocytes and posttraumatic response in the common sea star Asterias rubens. Cell Stress Chaperones 2007; 12(4):331–341.PubMedGoogle Scholar
  170. 170.
    Dubois P, Ameye L. Regeneration of spines and pedicellariae in echinoderms: a review. Microsc Res Tech 2001; 55:427–437.PubMedGoogle Scholar
  171. 171.
    Oweson C, Skold H, Pinsino A et al. Manganese effects on haematopoietic cells and circulating coelomocytes of Asterias rubens (Linnaeus). Aquat Toxicol 2008; 89(2):75–81.PubMedGoogle Scholar
  172. 172.
    Harrington FE, Easton DP. A putative precursor to the major yolk protein of the sea urchin. Dev Biol 1982; 94:505–508.PubMedGoogle Scholar
  173. 173.
    Noll H, Alcedo J, Daube M et al. The toposome, essential for sea urchin cell adhesion and development, is a modified iron-less caldium-binding transferrin. Dev Biol 2007; 310(1):54–70.PubMedGoogle Scholar
  174. 174.
    Cervello M, Arizza V, Lattuca G et al. Detection of vitellogenin in a subpopulation of sea urchin coelomocytes. Eur J Cell Biol 1994; 64:314–319.PubMedGoogle Scholar
  175. 175.
    Shyu AB, Raff RA, Bumenthal T. Expression of the vitellogenin gene in female and male sea urchin. Proc Natl Acad Sci U S A 1986; 83(1):3865–3869.PubMedGoogle Scholar
  176. 176.
    Unuma T, Konishi K, Kiyomoto M et al. The major yolk protein is synthesized in the digestive tract and secreted into the body cavities in sea urchin larvae. Mol Reprod Dev 2009; 76:142–150.PubMedGoogle Scholar
  177. 177.
    Rojas-Cartagena C, Ortiz-Pineda P, Ramirez-Gomez F et al. Distinct profiles of expressed sequence tags during intestinal regeneration in the sea cucumber Holothuria glaberrima. Physiol Genomics 2007; 31:203–215.PubMedGoogle Scholar
  178. 178.
    Rinkevich Y, Matranga V, Rinkevich B. Stem cells in aquatic invertebrates: Common premises and emerging unique themes. In: Rinkevich B, Matranga V, eds. Stem Cells in Marine Organisms: Springer Publishers; 2009:61–104.Google Scholar
  179. 179.
    Matranga V, Yokota Y. Responses of marine organisms to physical and chemical impacts. Cell Biol Toxicol 2008; 24(6):471–474.PubMedGoogle Scholar
  180. 180.
    Matranga V, Bonaventura R, Di Bella G. Hsp70 as a stress marker of sea urchin coelomocytes in short term cultures. Cell Mol Biol (Noisy-le-grand) 2002; 48(4):345–349.Google Scholar
  181. 181.
    Matranga V, Toia G, Bonaventura R et al. Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperones 2000; 5(2):113–120.PubMedGoogle Scholar
  182. 182.
    Becker J, Craig EA. Heat-shock proteins as molecular chaperones. Eur J Biochem 1994; 219:11–23.PubMedGoogle Scholar
  183. 183.
    Tsan MF, Gao B. Heat shock protein and innate immunity. Cell Mol Immunol 2004; 1(4):274–279.PubMedGoogle Scholar
  184. 184.
    Robert J. Evolution of heat shock protein and immunity. Dev Comp Immunol 2003; 27:449–464.PubMedGoogle Scholar
  185. 185.
    Pinsino A, Delia Torre C, Sammarini V et al. Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Southern Adriatic Sea, Italy. Cell Biol Toxicol 2008; 24(6):541–552.PubMedGoogle Scholar
  186. 186.
    Coteur G, Gillan D, Joly G et al. Field contamination of the starfish Asterias rubens by metals. Part 2: Effects on cellular immunity. Environ Toxicol Chem 2003; 22(9):2145–2151.PubMedGoogle Scholar
  187. 187.
    Coteur G, Danis B, Dubois P. Echinoderm reactive oxygen species (ROS) production measured by peroxidase, luminol-enhanced chemiluminescence (PLCL) as an immunotoxicological tool. Prog Mol Subcell Biol 2005; 39:71–83.PubMedGoogle Scholar
  188. 188.
    Danis B, Goriely S, Dubois P et al. Contrasting effects of coplanar versus noncoplanar PCB congeners on immunomodulation and CYP1A levels (determined using an adapted ELISA method) in the common sea star Asterias rubens L. Aquat Toxicol 2004; 69(4):371–383.PubMedGoogle Scholar
  189. 189.
    Danis B, Wantier P, Flammang R et al. Bioaccumulation and effects of PCBs and heavy metals in sea stars (Asterias rubens, L.) from the North Sea: a small scale perspective. Sci Total Environ 2006; 356(1-3):275–289.PubMedGoogle Scholar
  190. 190.
    Coteur G, Danis B, Wantier P et al. Increased phagocytic activity in contaminated seastars (Asterias rubens) collected in the Southern Bight of the North Sea. Mar Pollut Bull 2005; 50(11): 1295–1302.PubMedGoogle Scholar
  191. 191.
    Schroder HC, Di Bella G, Janipour N et al. DNA damage and developmental defects after exposure to UV and heavy metals in sea urchin cells and embryons compared to other invertebrates. In: Matranga V, ed. Echinodermata. Heidelberg, Germany: Springer Publishers; 2005:111–137.Google Scholar
  192. 192.
    Hartwig A. Role of DNA repair inhibition in lead-and cadmium-induced genotoxicity: a review. Environ Health Perspect 1994; 102(Suppl 3):45–50.PubMedGoogle Scholar
  193. 193.
    Angelini C, Amaroli A, Falugi C et al. Acetylcholinesterase activity is affected by stress conditions in Paracentrotus lividus coelomocytes. Mar Biol 2003; 143:623–628.Google Scholar
  194. 194.
    Lessios HA. Population dynamics of Diadema antillarum (Echinodermata: Echinoidea) following mass mortality in Panama. Mar Biol 1988; 99:515–526.Google Scholar
  195. 195.
    Hughes TP, Keller BD, Backson JBC et al. Mass mortality of the echinoid Diadema antillarum Philippi in Jamaica. Bull Mar Sci 1985; 36:377–384.Google Scholar
  196. 196.
    Forcucci D. Population density, recruitment and 1991 mortality event of Diadema antillarum in the Florida Keys. Bull Mar Sci 1994; 53:917–928.Google Scholar
  197. 197.
    Hughes TP, Reed DC, Boyle MJ. Herbivory on coral reefs: Community structure following mass mortalities of sea urchins. J Exp Mar Bio Ecol 1987; 113:39–59.Google Scholar
  198. 198.
    Liddell WD, Ohlhorst SL. Changes in benthic community composition following the mass mortality of Diadema at Jamaica. J Exp Mar Bio Ecol 1986; 95:271–278.Google Scholar
  199. 199.
    Williams SL, Carpenter RC. Nitrogen-limited primary productivity of coral reef algal turfs: potential contribution of ammonium excreted by Diadema antillarum. Mar Ecol Prog Ser 1988; 47(2):145–152.Google Scholar
  200. 200.
    Carpenter RC. Mass mortality of Diadema antillarum. 1. Long-term effects on sea urchin population-dynamics and coral reef algal communities. Mar Biol 1990; 104:67–77.Google Scholar
  201. 201.
    Sammarco PW. Diadema and its relationship to coral spat mortality: grazing, competition and biological disturbance. J Exp Mar Bio Ecol 1980; 45:245–272.Google Scholar
  202. 202.
    Mumby PJ, Hastings A, Edwards HJ. Thresholds and the resilience of Caribbean coral reefs. Nature 2007;450(7166):98–101.PubMedGoogle Scholar
  203. 203.
    Bauer JC, Agerter CJ. Isolation of potentially pathogenic bacterial flora from tropical sea urchins in selected West Atlantic and East Pacific sites. Bull Mar Sci. 1994; 55:142–150.Google Scholar
  204. 204.
    Scheibling RE, Hennigar AW. Recurrent outbreaks of disease in sea urchins Strongylocentrotus droebachiensis in Nova Scotia: evidence for a link with large-scale meteorologic and oceanographie events. Mar Ecol Prog Ser 1997; 152:155–165.Google Scholar
  205. 205.
    Shimizu M. Histopathological investigation of the spotted gonad disease in the sea urchin, Strongylocentrotus intermedius. J Invertebr Pathol 1994; 63:182–187.Google Scholar
  206. 206.
    Shimizu M, Takaya Y, Ohsake S et al. Gross and histopathological signs of the spotting disease in the sea urchin Strongylocentrotus intermedius. Fisheries Sci 1995; 61:608–661.Google Scholar
  207. 207.
    Tajima K, Hiranno R, Shimizu M et al. Isolation and pathogenicity of the causative bacterium of spotting disease of sea urchin Strongylocentrotus intermedius. Fisheries Sci 1997; 63:249–252.Google Scholar
  208. 208.
    Tajima K, Takeuchi K, Iqbal MM et al. Studies on a bacterial disease of sea urchin Strongylocentrotus intermedius occurring at low water temperatures. Fisheries Sci (Japan) 1998; 64(6):918–920.Google Scholar
  209. 209.
    Tajima K, Shimizu M, Miura M et al. Seasonal fluctuations of Flexibacter sp. the causative bacterium of spotting disease of sea urchin Strongylocentrotus intermedius in the culturing facilities and coastal area. Fisheries Sci (Japan) 1998; 64(1):6–9.Google Scholar
  210. 210.
    Rast JP, Messier-Solek C. Marine invertebrate genome sequences and our evolving understanding of animal immunity. Biol Bull 2008; 214:274–283.PubMedGoogle Scholar
  211. 211.
    Rizzo R, Fernandez-Serra M, Squarzoni P et al. Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev Biol 2006; 300(1):35–48.PubMedGoogle Scholar
  212. 212.
    Livingston BT, Killian CE, Wilt F et al. A genome-side analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Dev Biol 2006; 300:335–348.PubMedGoogle Scholar
  213. 213.
    Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for multiple sequence alignments. JMB 2000; (302):205–217.Google Scholar
  214. 214.
    Mesquite: a modular system for evolutionary analysis. [computer program]. Version 2.72; 2009.Google Scholar
  215. 215.
    PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). [computer program]. Version 4. Sunderland, Massachusetts: Sinauer Associates; 2003.Google Scholar
  216. 216.
    Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19(12): 1572–1574.PubMedGoogle Scholar
  217. 217.
    Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics 1998; 14(9):817–818.PubMedGoogle Scholar
  218. 218.
    Silva JR. The onset of phagocytosis and identity in the embryo of Lytechinus variegatus. Dev Comp Immunol 2000; 24(8):733–739.PubMedGoogle Scholar
  219. 219.
    Furukawa R, Takahashi Y, Kanajima Y et al. Defense system by mesenchyme cells in bipinnaria larvae of the starfish, Asterina pectinifera. Dev Comp Immunol 2009; 33(2):205–215.PubMedGoogle Scholar
  220. 220.
    Tamboline CR, Burke RD. Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells. J Exp Zool 1992; 262(1):51–60.PubMedGoogle Scholar
  221. 221.
    Castellani C, Rast JP, Davidson EH. Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening. Development 2003; 130(19):4587–4596.Google Scholar
  222. 222.
    Matranga V, Bonaventura R. Sea urchin coelomocytes, the progenitors of vertebrate immune effectors, as bio-indicators of stress and pollution. In: Yokota Y, Matranga V, Smolenicka Z, eds. The Sea Urchin: from Basic Biology to Aquaculture. Lisse, the Netherlands: Balkema; 2002:161–176.Google Scholar
  223. 223.
    Smith LC, Britten RJ, Davidson EH. SpCoel1: a sea urchin profilin gene expressed specifically in coelomocytes in response to injury. Mol Biol Cell 1992; 3(4):403–414.PubMedGoogle Scholar
  224. 224.
    Kakiuchi M, Okino N, Sueyoshi N et al. Purification, characterization and cDNA cloning of alpha-N-acetylgalactosamine-specific lectin from starfish, Asterina pectinifera. Glycobiology 2002; 12(2):85–94.PubMedGoogle Scholar
  225. 225.
    Snowden AM, Vasta GR. A dimeric lectin from coelomic fluid of the starfish Oreaster reticulatus cross-reacts with the sea urchin embryonic substrate adhesion protein, echinonectin. Ann N Y Acad Sci 1994; 712:327–329.PubMedGoogle Scholar
  226. 226.
    Alliegro MC, Ettensohn CA, Burdsal CA et al. Echinonectin: a new embryonic substrate adhesion protein. J Cell Biol 1988; 107(6 Pt 1):2319–2327.PubMedGoogle Scholar
  227. 227.
    Drago F, Malagoli D, Pezzino FM et al. Presence of a low molecular weight lectin in the coelomic fluid of the sea urchin Paracentrotus lividus. Inv Surv Journal 2009; 6(1):15–20.Google Scholar
  228. 228.
    Nakagawa H, Hashimoto T, Hayashi H et al. Isolation of a novel lectin from the globiferous pedicellariae of the sea urchin Toxopneustes pileolus. Adv Exp Med Biol 1996; 391:213–223.PubMedGoogle Scholar
  229. 229.
    Hatakeyama T, Himeshima T, Komatsu A et al. Purification and characterization of two lectins from the sea cucumber Stichopus japonicus. Biosci Biotechnol Biochem 1993; 57(10):1736–1739.PubMedGoogle Scholar
  230. 230.
    Matsui T, Ozeki Y, Suzuki M et al. Purification and characterization of two Ca(2+)-dependent lectins from coelomic plasma of sea cucumber, Stichopus japonicus. J Biochem 1994; 116(5):1127–1133.PubMedGoogle Scholar
  231. 231.
    Hatakeyama T, Kohzaki H, Nagatomo H et al. Purification and characterization of four Ca(2+)-dDependent lectins from the marine invertebrate, Cucumaria echinata. J Biochem 1994; 116:209–214.PubMedGoogle Scholar
  232. 232.
    Hatakeyama T, Ohuchi K, Kuroki M et al. Amino acid sequence of a C-type lectin CEL-IV from the marine invertebrate Cucumaria echinata. Biosci Biotechnol Biochem 1995; 59:1314–1317.PubMedGoogle Scholar
  233. 233.
    Bulgakov AA, Nazarenko EL, Petrova IY et al. Isolation and properties of a mannan-binding lectin from the coelomic fluid of the holothurian Cucumaria japonica. Biochemistry (Mosc) 2000; 65(8):933–939.Google Scholar
  234. 234.
    Gowda NM, Goswami U, Khan MI. Purification and characterization of a T-antigen specific lectin from the coelomic fluid of a marine invertebrate, sea cucumber (Holothuria scabra). Fish Shellfish Immunol 2008; 24(4):450–458.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • L. Courtney Smith
    • 1
  • Julie Ghosh
    • 1
  • Katherine M. Buckley
    • 2
  • Lori A. Clow
    • 3
  • Nolwenn M. Dheilly
    • 4
  • Tor Haug
    • 5
  • John H. Henson
    • 6
  • Chun Li
    • 5
  • Cheng Man Lun
    • 1
  • Audrey J. Majeske
    • 1
  • Valeria Matranga
    • 7
  • Sham V. Nair
    • 4
  • Jonathan P. Rast
    • 2
  • David A. Raftos
    • 4
  • Mattias Roth
    • 4
  • Sandro Sacchi
    • 1
  • Catherine S. Schrankel
    • 1
  • Klara Stensvåg
    • 5
  1. 1.Department of Biological SciencesGeorge Washington UniversityWashington DCUSA
  2. 2.Department of Medical Biophysics and Department of Immunology, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoCanada
  3. 3.US Patent and Trademark OfficeAlexandriaUSA
  4. 4.Department of Biological SciencesMacquarie UniversitySydneyAustralia
  5. 5.Norwegian College of Fishery ScienceUniversity of TromsoTromsoNorway
  6. 6.Department of Biology and the Biochemistry and Molecular Biology ProgramDickinson CollegeCarlisleUSA
  7. 7.CNRInstitute of Biomedicine and Molecular Immunology “Albert Monroy”PalermoItaly

Personalised recommendations