Canonical Ordination

  • Daniel Borcard
  • François Gillet
  • Pierre Legendre
Part of the Use R book series (USE R)


Simple (unconstrained) ordination analyses one data matrix and reveals its major structure in a graph constructed from a reduced set of orthogonal axes. It is therefore a passive form of analysis, and the user interprets the ordination results a posteriori, as described in Chap. 5. Canonical ordination, on the contrary, associates two or more data sets in the ordination process itself. Consequently, if one wishes to extract structures of a data set that are related to structures in other data sets, and/or formally test statistical hypotheses about the significance of these relationships, canonical ordination is the way to go.


Explanatory Variable Linear Discriminant Analysis Fish Community Canonical Correspondence Analysis Canonical Correlation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, M. J.: Distinguishing direct from indirect effects of grazers in intertidal estuarine assemblages. Journal of Experimental Marine Biology and Ecology 234, 199–218 (1999)CrossRefGoogle Scholar
  2. Beamud, S. G., Diaz, M. M., Baccala, N. B. and Pedrozo, F. L.: Analysis of patterns of vertical and temporal distribution of phytoplankton using multifactorial analysis: Acidic Lake Caviahue, Patagonia, Argentina. Limnologica 40, 140–147 (2010)Google Scholar
  3. Blanchet, F. G., Legendre, P. and Borcard, D.: Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008a)CrossRefGoogle Scholar
  4. Borcard D., Legendre, P. and Drapeau, P.: Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992)CrossRefGoogle Scholar
  5. Carlson, M. L., Flagstad, L. A., Gillet, F. and Mitchell, E. A. D.: Community development along a proglacial chronosequence: are above-ground and below-ground community structure controlled more by biotic than abiotic factors? Journal of Ecology 98, 1084–1095 (2010)CrossRefGoogle Scholar
  6. Dolédec, S. and Chessel, D.: Co-inertia analysis: an alternative method to study species-environment relationships. Freshwater Biology 31, 277–294 (1994)CrossRefGoogle Scholar
  7. Doledec, S., Chessel, D., ter Braak, C. J. F. and Champely, S.: Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics 3, 143–166 (1996)CrossRefGoogle Scholar
  8. Dray, S., Pettorelli, N. and Chessel, D.: Matching data sets from two different spatial samplings. Journal of Vegetation Science 13, 867–874 (2002)CrossRefGoogle Scholar
  9. Dray, S., Chessel, D. and Thioulouse, J.: Co-inertia analysis and the linking of ecological data tables. Ecology 84, 3078–3089 (2003)CrossRefGoogle Scholar
  10. Escofier, B. and Pagès, J.: Multiple factor analysis (AFMULT package). Computational Statistics and Data Analysis 18, 121–140 (1994)zbMATHCrossRefGoogle Scholar
  11. Escoufier, Y.: The duality diagram: a means of better practical applications. In Legendre, P., Legendre, L. (eds) Developments in numerical ecology, NATO ASI series, Series G: Ecological Sciences, vol. 14 pp. 139–156. Springer, Berlin (1987)Google Scholar
  12. Ezekiel, M.: Methods of correlational analysis. Wiley, New York (1930)Google Scholar
  13. Faith, D. P, Minchin, P. R. and Belbin, L.: Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 57–68 (1987)CrossRefGoogle Scholar
  14. Geffen, E., Anderson, M. J. and Wayne, R. K.: Climate and habitat barriers to dispersal in the highly mobile gray wolf. Molecular Ecology 13, 2481–2490 (2004)CrossRefGoogle Scholar
  15. Josse, J., Pagès, J. and Husson, F.: Testing the significance of the RV coefficient. Computational Statistics and Data Analysis 53, 82–91 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  16. Lamentowicz, M., Lamentowicz, L., van der Knaap, W. O., Gabka, M. and Mitchell, E. A. D.: Contrasting species-environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen-bog gradient. Microbial Ecology 59, 499–510 (2010).CrossRefGoogle Scholar
  17. Lear, G., Anderson, M. J., Smith, J. P., Boxen, K. and Lewis, G. D.: Spatial and temporal heterogeneity of the bacterial communities in stream epilithic biofilms. FEMS Microbiology Ecology 65, 463–473 (2008)CrossRefGoogle Scholar
  18. Legendre, P. and Anderson, M. J.: Distance-based redundancy analysis: testing multi-species responses in multi-factorial ecological experiments. Ecological Monographs 69, 1–24 (1999)CrossRefGoogle Scholar
  19. Legendre, P. and Gallagher, E. D.: Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001)CrossRefGoogle Scholar
  20. Legendre, P. and Legendre, L.: Numerical ecology. 2nd English edition. Elsevier, Amsterdam (1998)Google Scholar
  21. Legendre, P., De Caceres, M. and Borcard, D.: Community surveys through space and time: testing the space-time interaction in the absence of replication. Ecology 91, 262–272 (2010)CrossRefGoogle Scholar
  22. McCune, B.: Influence of noisy environmental data on canonical correspondence analysis. Ecology 78, 2617–2623 (1997)CrossRefGoogle Scholar
  23. Miller, J. K.: The sampling distribution and a test for the significance of the bimultivariate redundancy statistic: a Monte Carlo study. Multivariate Behavioral Research 10, 233–244 (1975)CrossRefGoogle Scholar
  24. Peres-Neto, P. R., Legendre, P., Dray, S. and Borcard, D.: Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006)CrossRefGoogle Scholar
  25. Pillai, K. C. S. and Hsu, Y. S.: Exact robustness studies of the test of independence based on four multivariate criteria and their distribution problems under violations. Annals of the Institute of Statistical Mathematics 31, 85–101 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  26. Robert, P. and Escoufier, Y.: A unifying tool for linear multivariate statistical methods: the RV-coefficient. Applied Statistics 25, 257–265 (1976)CrossRefMathSciNetGoogle Scholar
  27. ter Braak, C. J. F.: Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986)CrossRefGoogle Scholar
  28. ter Braak, C. J. F.: The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69, 69–77 (1987)CrossRefGoogle Scholar
  29. ter Braak, C. J. F.: Partial canonical correspondence analysis. In Bock H.H. (ed) Classification and related methods of data analysis, pp. 551–558. North-Holland, Amsterdam (1988)Google Scholar
  30. ter Braak, C. J. F. and Schaffers, A. P.: Co-correspondence analysis: a new ordination method to relate two community compositions. Ecology 85, 834–846 (2004)CrossRefGoogle Scholar
  31. van den Brink, P. J. and ter Braak C. J. F.: Multivariate analysis of stress in experimental ecosystems by Principal Response Curves and similarity analysis. Aquatic Ecology 32, 163–178 (1998)CrossRefGoogle Scholar
  32. van den Brink P. J. and ter Braak C. J. F.: Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environmental Toxicology and Chemistry 18, 138–148 (1999)CrossRefGoogle Scholar
  33. Dray, S., Dufour, A.B. and Chessel, D.: The ade4 package-II: Two-table and K-table methods. R News. 7, 47–52 (2007)Google Scholar
  34. Lê, S., Josse, J. and Husson, F.: FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25, 1. (2008)
  35. Dray, S., Legendre, P. and Blanchet, F. G.: packfor: Forward selection with permutation. R package version 0.0-9. (2007)

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Daniel Borcard
    • 1
  • François Gillet
    • 2
  • Pierre Legendre
    • 1
  1. 1.Département de sciences biologiquesUniversité de MontréalMontréalCanada
  2. 2.UMR 6249 Chrono-environnement UFR Sciences et TechniquesUniversité de Franche-Comté - CNRSBesançon cedexFrance

Personalised recommendations