Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment

Chapter

Abstract

Culture-based methods are important in investigating the microbial ecology of natural and anthropogenically impacted environments, but they are extremely biased in their evaluation of microbial genetic diversity by selecting a particular population of microorganisms. With recent advances in genomics and sequencing technologies, microbial community analyses using culture-independent molecular techniques have initiated a new era of microbial ecology. Molecular analyses of environmental communities have revealed that the cultivable fraction represents <1% of the total number of prokaryotic species present in any given sample. A variety of molecular methods based on direct isolation and analysis of nucleic acids, proteins, and lipids from environmental samples have been discovered and revealed structural and functional information about microbial communities. Molecular approaches such as genetic fingerprinting, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics are vital for discovering and characterizing the vast microbial diversity and understanding their interactions with biotic and abiotic environmental factors. This chapter summarizes recent progress in the area of molecular microbial ecology with an emphasis on novel techniques and approaches that offer new insights into the phylogenetic and functional diversity of microbial assemblages. The advantages and pitfalls of commonly used molecular methods to investigate microbial communities are discussed. The potential applications of each molecular technique and how they can be combined for a greater comprehensive assessment of microbial diversity has been illustrated with example studies.

References

  1. Adamczyk, J., Hesselsoe, M., Iversen, N., Horn, M., Lehner, A., Nielsen, P.H., Schloter, M., Roslev, P., Wagner, M. 2003. The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol. 69:6875–6887.CrossRefGoogle Scholar
  2. Amann, R.I., Ludwig, W., Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143–169.Google Scholar
  3. Banfield, J.F., Verberkmoes, N.C., Hettich, R.L., Thelen, M.P. 2005. Proteogenomic approaches for the molecular characterization of natural microbial communities. OMICS 9:301–333.CrossRefGoogle Scholar
  4. Banowetz, G.M., Whittaker, G.W., Dierksen, K.P., Azevedo, M.D., Kennedy, A.C., Griffith, S.M., Steiner, J.J. 2006. Fatty acid methyl ester analysis to identify sources of soil in surface water. J. Environ. Qual. 3:133–140.CrossRefGoogle Scholar
  5. Benndorf, D., Balcke, G.U., Harms, H., von Bergen, M. 2007. Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J. 1:224–234.CrossRefGoogle Scholar
  6. Brodie, E.L., DeSantis, T.Z., Parker, J.P., Zubietta, I.X., Piceno, Y.M., Andersen, G.L. 2007. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. USA. 104:299–304.CrossRefGoogle Scholar
  7. Bustin, S.A., Benes, V., Nolan, T., Pfaffl, M.W. 2005. Quantitative real-time RT-PCR – a perspective. J. Mol. Endocrinol. 34:597–601.CrossRefGoogle Scholar
  8. Caracciolo, A.B., Bottoni, P., Grenni, P. 2010. Fluorescence in situ hybridization in soil and water ecosystems: a useful method for studying the effect of xenobiotics on bacterial community structure. Toxicol. Environ. Chem. 92:567–579.CrossRefGoogle Scholar
  9. Cupples, A.M., Sims, G.K. 2007. Identification of in situ 2,4 dichlorophenoxyacetic acid-degrading soil microorganisms using DNA-stable isotope probing. Soil Biol. Biochem. 39:232–238.CrossRefGoogle Scholar
  10. Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., von Mering, C., Vorholt, J.A. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. USA. 106:16428–16433.CrossRefGoogle Scholar
  11. DeSantis, T.Z., Brodie, E.L., Moberg, J.P., Zubieta, I.X., Piceno, Y.M., Andersen, G.L. 2007. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb. Ecol. 53:371–383.CrossRefGoogle Scholar
  12. Dunbar, J., Barns, S.M., Ticknor, L.O., Kuske, C.R. 2002. Empirical and theoretical bacterial diversity in four Arizona soils. Appl. Environ. Microbiol. 68:3035–3045.CrossRefGoogle Scholar
  13. Feinstein, L.M., Sul, W.J., Blackwood, C.B. 2009. Assessment of bias associated with incomplete extraction of microbial DNA from soil. Appl. Environ. Microbiol. 75:5428–5433.Google Scholar
  14. Fierer, N., Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 103:626–631.CrossRefGoogle Scholar
  15. Fierer, N., Jackson, J.A., Vilgalys, R., Jackson, R.B. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71:4117–4120.CrossRefGoogle Scholar
  16. Fisher, M.M., Triplett, E.W. 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65:4630–4636.Google Scholar
  17. Foti, M., Sorokin, D.Y., Lomans, B., Mussman, M., Zacharova, E.E., Pimenov, N.V., Kuenen, J.G., Muyzer, G. 2007. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl. Environ. Microbiol. 73:2093–3000.CrossRefGoogle Scholar
  18. Franklin, R.B., Taylor, D.R., Mills, A.L. 1999. Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD). J. Microbiol. Methods. 35:225–235.CrossRefGoogle Scholar
  19. Garbeva, P., van Veen, J.A., van Elsas, J.D. 2004. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243–270.CrossRefGoogle Scholar
  20. Gentry, T.J., Wickham, G.S., Schadt, C.W., He, Z., Zhou, J. 2006. Microarray applications in microbial ecology research. Microb. Ecol. 52:159–175.CrossRefGoogle Scholar
  21. Ghebremedhin, B., Layer, F., König, W., König, B. 2008. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16 rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J. Clin. Microbiol. 46:1019–1025.CrossRefGoogle Scholar
  22. Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., Tiedje, J.M. 2007. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57:81–91.CrossRefGoogle Scholar
  23. Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68:669–685.CrossRefGoogle Scholar
  24. Hansel, C.M., Fendorf, S., Jardine, P.M., Francis, C.A. 2008. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl. Environ. Microbiol. 74:1620–1633.CrossRefGoogle Scholar
  25. He, Z., Gentry, T.J., Schadt, C.W., Wu, L., Liebich, J., Chong, S.C., Huang, Z., Wu, W., Gu, B., Jardine, P., Criddle, C., Zhou, J. 2007. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1:67–77.CrossRefGoogle Scholar
  26. Henne, A., Schmitz, R.A., Bömeke, M., Gottschalk, G., Daniel, R. 2000. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl. Environ. Microbiol. 66:3113–3116.CrossRefGoogle Scholar
  27. Huang, W.E., Stoecker, K., Griffiths, R., Newbold, L., Daims, H., Whiteley, A.S., Wagner, M. 2007. Raman–FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9:1878–1889.CrossRefGoogle Scholar
  28. Hugenholtz, P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3:Reviews 0003.CrossRefGoogle Scholar
  29. Huson, D.H., Auch, A.F., Qi, J., Schuster, S.C. 2007. MEGAN analysis of metagenomic data. Genome Res. 17:377–386.CrossRefGoogle Scholar
  30. Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M., Omura, S. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21:526–531.CrossRefGoogle Scholar
  31. Keller, M., Hettich, R. 2009. Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiol. Mol. Biol. Rev. 73:62–70.CrossRefGoogle Scholar
  32. Kirk, JL., Beaudette, L.A., Hart, M., Moutoglis, P., Klironomos, J.N., Lee, H., Trevors, J.T. 2004. Methods of studying soil microbial diversity. J Microbiol Methods. 58:169–188.CrossRefGoogle Scholar
  33. Kolb, S., Knief, C., Stubner, S., Conrad, R. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69:2423–2429.CrossRefGoogle Scholar
  34. Konstantinidis, K.T., Ramette, A., Tiedje, J.M. 2006. The bacterial species definition in the genomic era. Philos. Trans. R. Soc. B. 361:1929–1940.CrossRefGoogle Scholar
  35. Lauber, C.L., Hamady, M., Knight, R., Fierer, N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75:5111–5120.CrossRefGoogle Scholar
  36. Li, X., Luo, Q., Wofford, N.Q., Keller, K.L., McInerney, M.J., Wall, J.D., Krumholz, L.R. 2009. A molybdopterin oxidoreductase is involved in H2 oxidation in Desulfovibrio desulfuricans G20. J. Bacteriol. 191:2675–2682.CrossRefGoogle Scholar
  37. Li, T., Wu, T.D., Mazéas, L., Toffin, L., Guerquin-Kern, J.L., Leblon, G., Bouchez, T. 2008. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10:580–588.CrossRefGoogle Scholar
  38. Markowitz, V.M., Chen, I.M., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Anderson, I., Lykidis, A., Mavromatis, K., Ivanova, N.N., Kyrpides, N.C. 2010. The integrated microbial genomes system: an expanding comparative analysis resource. Nucl. Acids Res. 38:382–390.CrossRefGoogle Scholar
  39. Metzker, M.L. 2010. Sequencing technologies – the next generation. Nat. Rev. Genet. 11:31–46.CrossRefGoogle Scholar
  40. Mills, D.K., Entry, J.A., Gillevet, P.M. 2007. Assessing microbial community diversity using amplicon length heterogeneity polymerase chain reaction. Soil Sci. Soc. Am. J. 71:572–578.CrossRefGoogle Scholar
  41. Moran, M.A. 2009. Metatranscriptomics: eavesdropping on complex microbial communities. Microbe. 4:329–335.Google Scholar
  42. Mühling, M., Woolven-Allen, J., Murrell, J.C., Joint, I. 2008. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J. 2:379–392.CrossRefGoogle Scholar
  43. Muyzer, G. 1999. Genetic fingerprinting of microbial communities – present status and future perspectives. Methods of microbial community analysis. Proceedings of the 8th international symposium on microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada.Google Scholar
  44. Muyzer, G., Waal, E.C.D., Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700.Google Scholar
  45. Nakatsua, C.H., Torsvik, V., Ovreas, L. 2000. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci. Soc. Am. J. 64:1382–1388.CrossRefGoogle Scholar
  46. Nielsen, J.L., Christensen, D., Kloppenborg, M., Nielsen, P.H. 2003. Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ. Microbiol. 5:202–211.CrossRefGoogle Scholar
  47. Nüsslein, K., Tiedje, J.M. 1999. Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl. Environ. Microbiol. 65:3622–3626.Google Scholar
  48. Okabe, S., Kindaichi, T., Tsukasa, I. 2004. MAR–FISH: an ecophysiological approach to link phylogenetic affiliation and in situ metabolic activity of microorganisms at a single-cell resolution. Microbes Environ. 19:83–98.CrossRefGoogle Scholar
  49. Okabe, S., Kindaichi, T., Ito, T. 2005. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl. Environ. Microbiol. 71:3987–3994.CrossRefGoogle Scholar
  50. Oliver, J.D. 2005. The viable but nonculturable state in bacteria. J. Microbiol. 43:93–100.Google Scholar
  51. Pernthaler, A., Pernthaler, J., Amann, R. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68:3094–3101.CrossRefGoogle Scholar
  52. Poretsky, R.S., Bano, N., Buchan, A., LeCleir, G., Kleikemper, J., Pickering, M., Pate, W.M., Moran, M.A., Hollibaugh, J.T. 2005. Analysis of microbial gene transcripts in environmental samples. Appl. Environ. Microbiol. 71:4121–4126.CrossRefGoogle Scholar
  53. Ranjard, L., Poly, F., Lata, J.C., Mougel, C., Thioulouse, J., Nazaret, S. 2001. Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl. Environ. Microbiol. 67:4479–4487.CrossRefGoogle Scholar
  54. Rastogi, G., Stetler, L.D., Peyton, B.M., Sani, R.K. 2009. Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake gold mine, South Dakota, USA. J. Microbiol. 47:371–384.CrossRefGoogle Scholar
  55. Rastogi, G., Osman, S., Vaishampayan, P.A., Andersen, G.L., Stetler, L.D., Sani, R.K. 2010. Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library. Microb. Ecol. 59:94–108.CrossRefGoogle Scholar
  56. Riesenfeld, C.S., Schloss, P.D., Handelsman, J. 2004. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38:525–552.CrossRefGoogle Scholar
  57. Ritchie, N.J., Schutter, M.E., Dick, R.P., Myrold, D.D. 2000. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl. Environ. Microbiol. 66:1668–1675.CrossRefGoogle Scholar
  58. Rogers, S.W., Moorman, T.B., Ong, S.K. 2007. Fluorescent in situ hybridization and micro-autoradiography applied to ecophysiology in soil. Soil Sci. Soc. Am. J. 71:620–631.CrossRefGoogle Scholar
  59. Rondon, M.R., August, P.R., Bettermann, A.D., Brady, S.F., Grossman, T.H., Liles, M.R., Loiacono, K.A., Lynch, B.A., MacNeil, I.A., Minor, C., Tiong, C.L., Gilman, M., Osburne, M.S., Clardy, J., Handelsman, J., Goodman, R.M. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66:2541–2547.CrossRefGoogle Scholar
  60. Schloss, P.D., Handelsman J. 2004. Status of the microbial census. Microbiol. Mol. Biol. Rev. 68:686–691.CrossRefGoogle Scholar
  61. Schwieger, F., Tebbe, C.C. 1998. A new approach to utilize PCR-single-strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 64:4870–4876.Google Scholar
  62. Singh, B.K., Campbell, C.D., Sorenson, S.J., Zhou, J. 2009. Soil genomics. Nature Reviews Microbiology 7:756 doi:10.1038/nrmicro2119-c1.Google Scholar
  63. Smit, E., Leeflang, P., Wernars, K. 1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol. Ecol. 23:249–261.CrossRefGoogle Scholar
  64. Smith, C.J., Osborn, A.M. 2009. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67:6–20.CrossRefGoogle Scholar
  65. Thies, J.E. 2007. Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci. Soc. Am. J. 71:579–591.CrossRefGoogle Scholar
  66. Torsvik, V., Øvreås, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5:240–245.CrossRefGoogle Scholar
  67. Urich, T., Lanzen, A., Qi, J., Huson, D.H., Schleper, C., Schuster, S.C. 2008. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 3:e2527.CrossRefGoogle Scholar
  68. von Wintzingerode, F., Göbel, U.B., Stackebrandt, E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213–229.CrossRefGoogle Scholar
  69. Wellington, E.M., Berry, A., Krsek, M. 2003. Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr. Opin. Microbiol. 6:295–301.CrossRefGoogle Scholar
  70. Whitman, W.B., Coleman, D.C., Wiebe, W.J. 1998. Prokaryotes: the unseen majority. Proc Natl. Acad. Sci. USA. 95:6578–6583.CrossRefGoogle Scholar
  71. Wilmes, P., Bond, P.L. 2006. Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol. 14:92–97.CrossRefGoogle Scholar
  72. Yang, Y., Yao, J., Hu, S., Qi, Y. 2000. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb. Ecol. 39:72–79.CrossRefGoogle Scholar
  73. Yergeau, E., Schoondermark-Stolk, S.A., Brodie, E.L., Déjean, S., DeSantis, T.Z., Gonçalves, O., Piceno, Y.M., Andersen, G.L., Kowalchuk, G.A. 2009. Environmental microarray analyses of Antarctic soil microbial communities. ISME J. 3:340–351.CrossRefGoogle Scholar
  74. Yuhong, Z., Shi, P., Liu, W., Meng, K., Bai, Y., Wang, G., Zhan, Z., Yao, B. 2009. Lipase diversity in glacier soil based on analysis of metagenomic DNA fragments and cell culture. J. Microbiol. Biotechnol. 19:888–897.CrossRefGoogle Scholar
  75. Zengler, K., Walcher, M., Clark, G., Haller, I., Toledo, G., Holland, T., Mathur, E.J., Woodnutt, G., Short, J.M., Keller, M. 2005. High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol. 397:124–130.CrossRefGoogle Scholar
  76. Zwolinski, M.D. 2007. DNA sequencing: strategies for soil microbiology. Soil Sci. Soc. Am. J. 71:592–600.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringSouth Dakota School of Mines and TechnologyRapid CityUSA
  2. 2.Department of Plant PathologyUniversity of CaliforniaDavisUSA

Personalised recommendations