Advertisement

Bioaugmentation-Assisted Phytoextraction Applied to Metal-Contaminated Soils: State of the Art and Future Prospects

  • Thierry LebeauEmail author
  • Karine Jézéquel
  • Armelle Braud
Chapter

Abstract

Bioaugmentation-assisted phytoextraction is a promising method for accelerating the cleanup rate of soils contaminated by metals. On average, bioaugmentation increases metal accumulated by plant shoots by factors of about two (metal concentration) and five, as a result of higher bioaccessibility of metals in soils, with few obvious differences between effects by bacteria or fungi (e.g., plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi). Metal bioaccessibility is always controlled by microbial siderophores as well as organic acids and surfactants. In cases of excess concentrations, fungi immobilize metals, in contrast to bacteria. Unfortunately, the typically low inoculant survival rate may impair bioaugmentation efficiency. In this chapter, microbial inoculant formulations and management are addressed, as well as strategies for selecting the most relevant plant–microorganism couples for optimum phytoextraction of soil metals. In environments subject to variable conditions, ecological engineering approaches may help in attaining maximal efficiency. Experiments at field-scale are reported, and environmental effects of the technique are discussed. Finally, future prospects are addressed with the main question being how maximal concentrations and amounts of metals in plants can be attained.

Keywords

Arbuscular Mycorrhizal Fungus Root Exudate Endophytic Bacterium Microbial Consortium Metal Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbott, L. K. and Robson, A. D. 1991. Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agric. Ecosyst. Environ. 35:121–150.CrossRefGoogle Scholar
  2. Abollino, O., Aceto, M., Malandrino, M., Mentasti, E., Sarzanini, C., and Petrella, F. 2002. Heavy metals of agricultural soils from Piedmont Italy. Distribution, speciation and chemometric data treatment. Chemosphere 46:545–557.CrossRefGoogle Scholar
  3. Abou-Shanab, R. A. I., Angle, J. S., and Chaney, R. L. 2006. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol. Biochem. 38:2882–2889.CrossRefGoogle Scholar
  4. Achouak, W., Conrod, S., Cohen, V., and Heulin, T. 2004. Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy. Mol. Plant Microbe Interact. 17:872–879.CrossRefGoogle Scholar
  5. Adriano, D. C. 1986. Trace element in the terrestrial environment. New York: Springer Verlag.Google Scholar
  6. Allen, H. E. 1997. Importance of speciation of metals in natural waters and soils to risk assessment. Report of International Workshop on Risk Assessment of Metals and their Inorganic Compounds, International Council on Metals and the Environment, pp. 141–157.Google Scholar
  7. Almas, A. R., Lombnaes, P., Sogn, T. A., and Mulder, J. 2006. Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Chemosphere 62:1647–1655.CrossRefGoogle Scholar
  8. Andrade, S. A. L., Gratão, P. L., Azevedo, R. A., Silveira, A. D. P., Schiavinato, M. A., and Mazzafera, P. 2010. Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ. Exp. Bot. 68:198–207.CrossRefGoogle Scholar
  9. Audet, P. and Charest, C. 2007a. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ. Pollut. 147:609–614.CrossRefGoogle Scholar
  10. Audet, P. and Charest, C. 2007b. Heavy metal phytoremediation from a metal-analytical perspective. Environ. Pollut. 147:231–237.CrossRefGoogle Scholar
  11. Awad, F. and Romheld, V. 2000. Mobilization of heavy metals from contaminated calcareous soils by plant born, microbial and synthetic chelators and their uptake by wheat plants. J. Plant Nutr. 23:1847–1855.CrossRefGoogle Scholar
  12. Azcón, R., Medina, A., Roldán, A., Biró, B., and Vivas, A. 2009. Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals. Chemosphere 75:327–334.CrossRefGoogle Scholar
  13. Badri, D. V., Weir, T. L., van der Lelie, D. and Vivanco, J. M. 2009. Rhizosphere chemical ­dialogues: plant–microbe interactions. Curr. Opin. Biotechnol. 20:642–650.CrossRefGoogle Scholar
  14. Baker, A. J. M., McGrath, S. P., Sidoli, C. M. D., and Reeves, R. D. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl. 11:41–49.CrossRefGoogle Scholar
  15. Baker, A. J. M., McGrath, S. P., Reeves, R. D., and Smith, J. A. C. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Phytoremediation of contaminated soil and water, eds. N. Terry and G. Banuelos. Boca Raton: Lewis Publisher, pp. 85–107.Google Scholar
  16. Banuelos, G. S. 2006. Phyto-products may be essential for sustainability and implementation of phytoremediation. Environ. Pollut. 144:19–23.CrossRefGoogle Scholar
  17. Barazani, O., Dudai, N., Khadka, U. R., and Golan-Goldhirsh, A. 2004. Cadmium accumulation in Allium schoenoprasum L. grown in an aqueous medium. Chemosphere 57:1213–1218.CrossRefGoogle Scholar
  18. Bar-Ness, E., Hadar, Y., Chen, Y., Shanzer, A., and Libman, J. 1992. Iron uptake by plants from microbial siderophores: a study with 7-nitrobenz-2 Oxa-1,3-diazole-desferrioxamine as fluorescent ferrioxamine B analog. Plant Physiol. 99:1329–1335.CrossRefGoogle Scholar
  19. Barona, A., Aranguiz, I., and Elias, A. 2001. Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean-up procedures. Environ. Pollut. 113:79–85.CrossRefGoogle Scholar
  20. Baum, C., Hrynkiewicz, K., Leinweber, P., and Meissner, R. 2006. Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix × dasyclados). J. Plant Nutr. Soil Sci. 169:516–522.CrossRefGoogle Scholar
  21. Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., Borisov, A. Y., and Tikhonovich, I. A. 2001. Characterization of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47:642–652.CrossRefGoogle Scholar
  22. Belimov, A. A., Kunakova, A. M., Safronova, V. I., Stepanok, V. V., Yudkin, L. Y., Alekseev, Y. V., and Kozhemyakov, A. P. 2004. Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology 73:99–106.CrossRefGoogle Scholar
  23. Benizri, E., Schoeny, A., Picard, C., Courtade, A., and Guckert, A. 1997. External and internal root colonization of maize by two Pseudomonas strains: enumeration by enzyme-linked immunosorbent assay (ELISA). Curr. Microbiol. 34:297–302.CrossRefGoogle Scholar
  24. Bennett, L. E., Bennett, L. E., Burkhead, J. L., Hale, K. L., Terry, N., Pilon, M., and Pilon-Smits, E. A. H. 2003. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual. 32:432–440.CrossRefGoogle Scholar
  25. Bianco, F. and Defez, R. 2009. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J. Exp. Bot. 60:3097–3107.CrossRefGoogle Scholar
  26. Bingemann, C. W., Varner, J. E., and Martin, W. P. 1953. The effect of the addition of organic materials on the decomposition of an organic soil. Proc. Soil Sci. Soc. Am. 17:34–38.CrossRefGoogle Scholar
  27. Bossier, P., Hofte, M., and Verstraete, W. 1988. Ecological significance of siderophores in soil. Adv. Microb. Ecol. 10:385–414.Google Scholar
  28. Braud, A., Jezequel, K., and Lebeau, T. 2006a. Siderophore production by using free and immobilized cells of two pseudomonads cultivated in a medium enriched with Fe and/or toxic metals (Cr, Hg, Pb). Biotechnol. Bioeng. 94:1080–1088.CrossRefGoogle Scholar
  29. Braud, A., Jezequel, K., Vieille, E., Tritter, A., and Lebeau, T. 2006b. Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut. Focus 6:261–279.CrossRefGoogle Scholar
  30. Braud, A., Jezequel, K., and Lebeau, T. 2007. Impact of substrates and cell immobilization on siderophore activity by Pseudomonads in a Fe and/or Cr, Hg, Pb containing-medium. J. Hazard. Mater. 144:229–239.CrossRefGoogle Scholar
  31. Braud, A., Hoegy, F., Jezequel, K., Lebeau, T., and Schalk, I. J. 2009a. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ. Microbiol. 11:1079–1091.CrossRefGoogle Scholar
  32. Braud, A., Jézéquel, K., Bazot, S., and Lebeau, T. 2009b. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286.CrossRefGoogle Scholar
  33. Brenner, K., You, L., and Arnold, F. H. 2008. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26:483–489.CrossRefGoogle Scholar
  34. Brooks, R. R. and Robinson, B. H. 1998. The potential use of hyperaccumulators and other plants for phytomining. In: Plants that hyperaccumulate heavy metals: their role in archaeology, microbiology, mineral exploration, phytomining and phytoremediation, ed R. R. Brooks. Wallingford: CAB International, pp. 27–48.Google Scholar
  35. Brown, S. L., Chaney, R. L., Angle, J. S., and Baker, A. J. M. 1994. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-contaminated and cadmium-contaminated soil. J. Environ. Qual. 23:1151–1157.CrossRefGoogle Scholar
  36. Burd, G. I., Dixon, D. G., and Glick, B. R. 1998. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol. 64:3663–3668.Google Scholar
  37. Castro, I. M., Fietto, J. L. R., Vieira, R. X., Tropia, M. J. M., Campos, L. M. M., Paniago, E. B., and Brandao, R. L. 2000. Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy 57:39–49.CrossRefGoogle Scholar
  38. Cattani, I., Fragoulis, G., Boccelli, R., and Capri, E. 2006. Copper bioavailability in the rhizopshere of maize (Zea mays L.) grown in two Italian soils. Chemosphere 64:1972–1979.CrossRefGoogle Scholar
  39. Chaudhry, Q., Blom-Zandstra, M., Gupta, S., and Joner E. J. 2005. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science Pollution Research 12:34–48.CrossRefGoogle Scholar
  40. Chauhan, A. and Jain, R. 2010. Biodegradation: gaining insight through proteomics. Biodegradation 21:861–879.CrossRefGoogle Scholar
  41. Checkai, R. T., Corey, R. B., and Helmke, P. A. 1987. Effect of ionic and complexed metal concentrations on plant uptake of cadmium and micronutrient cations from solution. Plant Soil 99:335–345.CrossRefGoogle Scholar
  42. Chen, H. and Cutright, T. 2001. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45:21–28.CrossRefGoogle Scholar
  43. Chen, B. D., Li, X. L., Tao, H. Q., Christie, P., and Wong, M. H. 2003. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846.CrossRefGoogle Scholar
  44. Chen, B., Shen, H., Li, X., Feng, G., and Christie, P. 2004a. Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261:219–229.CrossRefGoogle Scholar
  45. Chen, Y., Shen, Z., and Li, X. 2004b. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl. Geochem. 19:1553–1565.CrossRefGoogle Scholar
  46. Chen, B. D., Zhu, Y. G., and Smith, F. A. 2006. Effects of arbuscular mycorhizal inoculation uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere 62:1464–1473.CrossRefGoogle Scholar
  47. Citterio, S., Prato, N., Fumagalli, P., Aina, R., Massa, N., Santagostino, A., Sgorbati, S., and Berta, G. 2005. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29.CrossRefGoogle Scholar
  48. Clemens, S., Palmgren, M. G., and Kramer, U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7:309–315.CrossRefGoogle Scholar
  49. Corbisier, P., van der Lelie, D., Borremans, B., Provoost, A., de Lorenzo, V., Brown, N. L., Lloyd, J. R., Hobman, J. L., Csoregi, E., Johansson, G., and Mattiasson, B. 1999. Whole cell- and protein-based biosenors for the detection of bioavailable heavy metals in environmental samples. Anal. Chim. Acta 387:235–244.CrossRefGoogle Scholar
  50. Crecchio, G., Gelsomino, A., Ambrosoli, R., Minati, J. L., and Ruggiero, P. 2004. Functional and molecular responses of soil microbial communities under differing soil management practices. Soil Biol. Biochem. 36:1873–1883.CrossRefGoogle Scholar
  51. Crowley, D., Römheld, V., Marschner, H., and Szaniszlo, P. 1992. Root-microbial effects on plant iron uptake from siderophores and phytosiderophores. Plant Soil 142:1–7.Google Scholar
  52. Csillag, J., Partay, G., Lukacs, A., Bujtas, K., and Nemeth, T. 1999. Extraction of soil solution for environmental analysis. Int. J. Environ. Anal. Chem. 74:305–324.CrossRefGoogle Scholar
  53. Curl, E. A. and Truelove, B. 1986. The rhizosphere. Berlin: Springer-Verlag.Google Scholar
  54. De Leij, F., Sutton, E. J., Whipps, J. M., Fenlon, J. S., and Lynch, J. M. 1995. Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial populations of wheat. Appl. Environ. Microbiol. 61:3443–3453.Google Scholar
  55. de Souza, M. P., Chu, D., Zhao, M., Zayed, A. M., Ruzin, S. E., Schichnes, D., and Terry, N. 1999. Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol. 119:565–574.CrossRefGoogle Scholar
  56. Dejonghe, W., Boon, N., Seghers, D., Top, E. M., and Verstraete, W. 2001. Bioaugmentation of soils by increasing microbial richness: missing links. Environ. Microbiol. 3:649–657.CrossRefGoogle Scholar
  57. Dennis, P., Edwards, E. A., Liss, S. N., and Fulthorpe, R. 2003. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl. Environ. Microbiol. 69:769–778.CrossRefGoogle Scholar
  58. Dhankher, O. P., Li, Y., Rosen, B. P., Shi, J., Salt, D., Senecoff, J. F., Sashti, N. A., and Meagher, R. B. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol. 20:1140–1145.CrossRefGoogle Scholar
  59. Di Gregorio, S., Barbafieri, M., Lampis, S., Sanangelantoni, A. M., Tassi, E., and Vallini, G. 2006. Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299.CrossRefGoogle Scholar
  60. Di Simine, C. D., Sayer, J. A., and Gadd, G. M. 1998. Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol. Fertil. Soils 28:87–94.CrossRefGoogle Scholar
  61. Diels, L., De Smet, M., Hooyberghs, L., and Corbisier, P. 1999. Heavy metals bioremediation of soil. Mol. Biotechnol. 12:154–158.CrossRefGoogle Scholar
  62. Diez Lazaro, J., Kidd, P. S., and Monterroso Martinez, C. 2006. A phytogeochemical study of the Tras-os-Montes region (NE Portugal): possible species for plant-based soil remediation technologies. Sci. Total Environ. 354:265–277.CrossRefGoogle Scholar
  63. Dimkpa, C. O., Merten, D., Svato, A., Büchel, G., and Kothe, E. 2009. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J. Appl. Microbiol. 107:1687–1696.CrossRefGoogle Scholar
  64. Dubbin, W. E. and Ander, L. E. 2003. Influence of microbial hydroxamate siderophores on Pb(II) desorption from α-FeOOH. Appl. Geochem. 18:1751–1756.CrossRefGoogle Scholar
  65. Duffy, B. K. and Defago, G. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65:2429–2438.Google Scholar
  66. Duijff, B. J., Bakker, P. A. H. M., and Schippers, B. 1991. Influence of pseudobactin-358 on the iron nutrition of plants. 6th Int. Fe Symp. 31.Google Scholar
  67. Duponnois, R., Kisa, M., Assigbetse, K., Prin, Y., Thioulouse, J., Issartel, M., Moulin, P., and Lepage, M. 2006. Fluorescent pseudomonads occuring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Sci. Total Environ. 370:391–400.CrossRefGoogle Scholar
  68. Duquène, L., Vandenhove, H., Tack, F., Van Hees, M., and Wannijn, J. 2010. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass. J. Environ. Radioact. 101:140–147.CrossRefGoogle Scholar
  69. Duquenne, P., Chenu, C., Richard, G., and Catroux, G. 1999. Effect of carbon source supply and its location on competition between inoculated and established bacterial strains in sterile soil microcosm. FEMS Microbiol. Ecol. 29:331–339.CrossRefGoogle Scholar
  70. Duss, F., Mozafar, A., Oertli, J. J., and Jaeggi, W. 1986. Effect of bacteria on the iron uptake by axenically-cultured roots of Fe-efficient and Fe-inefficient tomatoes (Lycopersicon esculentum mill.). J. Plant Nutr. 9:587–598.CrossRefGoogle Scholar
  71. El Fantroussi, S. and Agathos, S. N. 2005. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr. Opin. Microbiol. 8:268–275.CrossRefGoogle Scholar
  72. El-Kherbawy, M., Angle, J. S., Heggo, A., and Chaney, R. L. 1989. Soil pH, rhizobia, and vesicular-arbuscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.). Biol. Fertil. Soils 8:61–65.CrossRefGoogle Scholar
  73. Epelde, L., Mijangos, I., Becerril, J. M., and Garbisu, C. 2009. Soil microbial community as bioindicator of the recovery of soil functioning derived from metal phytoextraction with sorghum. Soil Biol. Biochem. 41:1788–1794CrossRefGoogle Scholar
  74. Evangelou, M. W. H., Ebel, M., and Schaeffer, A. 2007. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003.CrossRefGoogle Scholar
  75. Evans, K. M., Katherine, M., Gatehouse, J. A., Lindsay, W. P., Shi, J., Tommey, A. M., and Robinson, N. J. 1992. Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Mol. Biol. 20:1019–1028.CrossRefGoogle Scholar
  76. Farwell, A. J., Vesely, S., Nero, V., Rodriguez, H., McCormack, K., Shah, S., Dixon, D. G., and Glick, B. R. 2007. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ. Pollut. 147:540–545.CrossRefGoogle Scholar
  77. Feng, M. H., Shan, X. Q., Zhang, S. Z., and Wen, B. 2005. Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere 59:939–949.CrossRefGoogle Scholar
  78. Filgueiras, A. V., Lavilla, I., and Bendicho, C. 2002. Chemical sequential extraction for metals partitioning in environmental solid samples. J. Environ. Monit. 4:823–857.CrossRefGoogle Scholar
  79. Forstner, U. 1995. Land contamination by heavy metals: global scope and magnitude of problem. In: Metal speciation and contamination of soils, ed. H. E. Allen. Boca Raton: Lewis Publishers, pp. 1–33.Google Scholar
  80. Gadd, G. M. 1993. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol. Rev. 11:297–316.CrossRefGoogle Scholar
  81. Gadd, G. M. 2001. Microbial metal transformation. J. Microbiol. 39:83–88.Google Scholar
  82. Gadd, G. M. 2004. Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119.CrossRefGoogle Scholar
  83. Gadd, G. M. and White, C. 1993. Microbial treatment of metal pollution – a working biotechnology? Trends Biotechnol. 11:353–359.CrossRefGoogle Scholar
  84. Gentry, T. J., Rensing, C., and Pepper, I. L. 2004. New approaches for bioaugmentation as a remediation technology. Crit. Rev. Environ. Sci. Technol. 34:447–494.CrossRefGoogle Scholar
  85. Gisbert, C., Ros, R., De Haro, A., Walker, D. J., Pilar Bernal, M., Serrano, R., and Navarro-Avino, J. 2003. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun. 303:440–445.CrossRefGoogle Scholar
  86. Gleba, D., Borisjuk, N. V., Borisjuk, L. G., Kneer, R., Poulev, A., Skarzhinska, M., Dushenkov, S., Logendra, S., Gleba, Y. Y., and Raskin, L. 1999.Use of plant roots for phytoremediation and molecular farming. Proc. Natl Acad. Sci. 96:5973–5977.CrossRefGoogle Scholar
  87. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41:109–117.CrossRefGoogle Scholar
  88. Glick, B. R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21:383–393.CrossRefGoogle Scholar
  89. Glick, B. R. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28:367–374.CrossRefGoogle Scholar
  90. Gonzaga, M., Ma, L., and Santos, J. 2007. Effects of plant age on arsenic hyperaccumulation by Pteris vittata L. Water Air Soil Pollut. 186:289–295.CrossRefGoogle Scholar
  91. González-Chávez, M. C., Carrillo-González, R., Wright, S. F., and Nichols, K. A. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ. Pollut. 130:317–323.CrossRefGoogle Scholar
  92. Grichko, V. P., Filby, B., and Glick, B. R. 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J. Biotechnol. 81:45–53.CrossRefGoogle Scholar
  93. Gries, D., Brunn, S., Crowley, D. E., and Parker, D. R. 1995. Phytosiderophore release in relation to micronutrient metal deficiencies in barley. Plant Soil 172:299–308.CrossRefGoogle Scholar
  94. Groleau-Renaud, V., Plantureux, S., Tubeileh, A., and Guckert, A. 2000. Influence of microflora and composition of root bathing solution on root exudation of maize plants. J. Plant Nutri. 23:1283–1301.CrossRefGoogle Scholar
  95. Guo, Y., George, E., and Marschner, H. 1996. Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195–205.CrossRefGoogle Scholar
  96. Gupta, R. and Aten, R. 1993. Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. Int. J. Envir. Anal. Chem. 51:25–46.CrossRefGoogle Scholar
  97. Gupta, A. K. and Sinha, S. 2006a. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: selection of single extractants. Chemosphere 64:161–173.CrossRefGoogle Scholar
  98. Gupta, A. K. and Sinha, S. 2006b. Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability. J. Hazard. Mater. 136:371–378.CrossRefGoogle Scholar
  99. Halstead, R. L., Finn, B. J., and McLean, A. J. 1969. Extractability of nickel added to the soils and its concentration in plants. Can. J. Soil Sci. 49:335–342.CrossRefGoogle Scholar
  100. Hammer, D. and Keller, C. 2002. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J. Environ. Qual. 31:1561–1569.CrossRefGoogle Scholar
  101. Haynes, R. J. 1990. Active ion uptake and maintenance of cation–anion balance: a critical examination of their role in regulating rhizosphere pH. Plant Soil 126:247–264.CrossRefGoogle Scholar
  102. Hazen, T. C. and Stahl, D. A. 2006. Using the stress response to monitor process control: pathways to more effective bioremediation. Curr Opin. Biotechnol. 17:285–290.CrossRefGoogle Scholar
  103. Heggo, A., Angle, J. S., and Chaney, R. L. 1990. Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol. Biochem. 22:865–869.CrossRefGoogle Scholar
  104. Hinchman, R. R., Negri, M. C., and Gatliff, E. G. 1998. Phytoremediation: using green plants to cleanup contaminated soil, groundwater and wastewater. Argonne, IL: Argonne National Laboratory.Google Scholar
  105. Hinsinger, P., Plassard, C., Tang, C., and Jaillard, B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59.CrossRefGoogle Scholar
  106. Höflich, G. and Metz, R. 1997. Interactions of plant–microorganism associations in heavy metal containing soils from sewage farms. Die Bodenkultur 48:239–247.Google Scholar
  107. Höfte, M., Buysens, S., Koedam, N., and Cornelis, P. 1993. Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6:85–91.CrossRefGoogle Scholar
  108. Hovsepyan, A. and Greipsson, S. 2004. Effect of arbuscular mycorrhizal fungi on phytoextraction by corn (Zea mays) of lead-contaminated soil. Int. J. Phytoremed. 6:305–321.CrossRefGoogle Scholar
  109. Huang, J. W. and Cunningham, S. D. 1996. Lead phytoextraction: species variation in lead uptake and translocation. New Phytol. 134:75–84.CrossRefGoogle Scholar
  110. Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W., and Sessitsch, A. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70:2667–2677.CrossRefGoogle Scholar
  111. Imsande, J. 1998. Iron, sulfur, and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Physiol. Plant. 103:139–144.CrossRefGoogle Scholar
  112. Iwamoto, T. and Nasu, M. 2001. Current bioremediation practice and perspective. J. Biosci. Bioeng. 92:1–8.CrossRefGoogle Scholar
  113. James, B. R. and Bartlett, R. J. 1984. Plant–soil interactions of chromium. J. Environ. Qual. 13:67–70.CrossRefGoogle Scholar
  114. Jankong, P., Visoottiviseth, P., and Khokiattiwong, S. 2007. Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68:1906–1912.CrossRefGoogle Scholar
  115. Jansson, J. K. 2003. Marker and reporter genes: illuminating tools for environmental microbiologists. Curr. Opin. Microbiol. 6:310–316.CrossRefGoogle Scholar
  116. Jiang, C. Y., Sheng, X. F., Qian, M., and Wang, Q. Y. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164.CrossRefGoogle Scholar
  117. Jing, Y. D., He, Z. L., and Yang, X. E. 2007. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J. Zhejiang Univ. Sci. B 8:192–207.CrossRefGoogle Scholar
  118. Joner, E. J. and Leyval, C. 1997. Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol. 135:353–360.CrossRefGoogle Scholar
  119. Jurkevitch, E., Hadar, Y., and Chen, Y. 1988. Involvement of bacterial siderophores in the remedy of lime-induced chlorosis in peanut. Soil Sci. Soc. Am. J. 52:1032–1037.CrossRefGoogle Scholar
  120. Kalembkiewicz, J. and Socco, E. 2002. Investigations of sequential extraction of chromium from soil. Polish J. Environ. Stud. 11:245–250.Google Scholar
  121. Kandasamy, S., Loganathan, K., Muthuraj, R., Duraisamy, S., Seetharaman, S., Thiruvengadam, R., Ponnusamy, B., and Ramasamy, S. 2009. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci. 7:47.CrossRefGoogle Scholar
  122. Karenlampi, S., Schat, H., Vangronsveld, J., Verkleij, J. A. C., van der Lelie, D., Mergeay, M., and Tervahauta, A. I. 2000. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Pollut. 107:225–231.CrossRefGoogle Scholar
  123. Kayser, G., Korckritz, T., and Markert, B. 2001. Bioleaching for the decontamination of heavy metals. Wasser Boden 53:54–58.Google Scholar
  124. Keller, C. and Hammer, D. 2005. Alternatives for phytoextraction: biomass plants versus hyperaccumulators. Geophys. Res. Abstr. 7.Google Scholar
  125. Kennedy, I. R., Choudhury, A. T. M. A., and Kecskés, M. L. 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol. Biochem. 36:1229–1244.CrossRefGoogle Scholar
  126. Khan, A. G. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 18:355–364.CrossRefGoogle Scholar
  127. Khan, M. R. and Khan, S. M. 2002. Effects of root-dip treatment with certain phosphate solubilizing microorganisms on the fusarial wilt of tomato. Biores. Technol. 85:213–215.CrossRefGoogle Scholar
  128. Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., and Hayes, W. J. 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:97–207.CrossRefGoogle Scholar
  129. Kheboian, C. and Bauer, C. F. 1987. Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Anal. Chem. 59:417–1423.CrossRefGoogle Scholar
  130. Kinnersley, A. M. 1993. The role of phytochelates in plant growth and productivity. Plant Growth Regul. 12:207–218.CrossRefGoogle Scholar
  131. Krämer, U. and Chardonnens, A. N. 2001. The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl. Microbiol. Biotechnol. 55:661–672.CrossRefGoogle Scholar
  132. Kramer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M., and Smith, J. A. C. 1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638.CrossRefGoogle Scholar
  133. Krotzky, A., Berggold, R., and Werner, D. 1988. Plant characteristics limiting associative N2-fixation (C2H2-reduction) with two cultivars of Sorghum nutans. Soil Biol. Biochem. 20:157–162.CrossRefGoogle Scholar
  134. Kuiper, I., Bloemberg, G., and Lugtenberg, B. 2001. Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol. Plant Microbe Interact. 14:1197–1205.CrossRefGoogle Scholar
  135. Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., and Lugtenberg, B. J. J. 2004. Rhizoremediation: a beneficial plant–microbe interaction. Mol. Plant Microbe Interact. 17:6–15.CrossRefGoogle Scholar
  136. Kumar, P. B. A. N., Dushenkov, V., Motto, H., and Raskin, Y. 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29:232–1238.CrossRefGoogle Scholar
  137. Kumar, K. V., Singh, N., Behl, H. M., and Srivastava, S. 2008. Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683.CrossRefGoogle Scholar
  138. Kush, A. K. and Dadarwal, K. R. 1981. Root exudates as pre-invasive factors in the modulation of chick pea varieties. Soil Biol. Biochem. 13:51–55.CrossRefGoogle Scholar
  139. Labana, S., Pandey, G., Paul, D., Sharma, N. K., Basu, A., and Jain, R. K. 2005. Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environ. Sci. Technol. 39:3330–3337.CrossRefGoogle Scholar
  140. Lampis, S., Ferrari, A., Cunha-Queda, A., Alvarenga, P., Di Gregorio, S., and Vallini, G. 2009. Selenite resistant rhizobacteria stimulate SeO32− phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds. Environ. Sci. Pollut. Res. Int. 16:663–670.CrossRefGoogle Scholar
  141. LaPara, T. M., Zakharova, T., Nakatsu, C. H., and Konopka, A. 2002. Functional and structural adaptations of bacterial communities growing on particulate substrates under stringent nutrient limitation. Microb. Ecol. 44:317–326.CrossRefGoogle Scholar
  142. Latour, X., Corberand, T., Laguerre, G., Allard, F., and Lemanceau, P. 1996. The composition of fluorescent Pseudomonad populations associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol. 62:2449–2456.Google Scholar
  143. Latour, X., Delorme, S., Mirleaub, P., and Lemanceau, P. 2003. Identification of traits implicated in the rhizosphere competence of fluorescent pseudomonads: description of a strategy based on population and model strain studies. Agronomie 23:397–405.CrossRefGoogle Scholar
  144. Lebeau, T. 2010. Bioaugmentation for in situ soil remediation: how to ensure the success of such a process. In: Bioaugmentation, biostimulation and biocontrol, eds. A. Singh, N. Parmar, and R. Kuhad, Chapter 10. “Soil Biology” series, Springer, in press.Google Scholar
  145. Lebeau, T., Bagot, D., Jézéquel, K., and Fabre, B. 2002. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: effects of Cd, pH and techniques of culture. Sci. Total Environ. 291:73–83.CrossRefGoogle Scholar
  146. Lebeau, T., Braud, A., and Jézéquel, K. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ. Pollut. 153:497–522.CrossRefGoogle Scholar
  147. Lee, M. H., Weidhaas, J., Macbeth, T., Swift, D., and Rothermel, J. S. 2009. Fluorescent in situ hybridization (FISH) techniques for remediation, In Situ and on-site bioremediation – 2009: Proc. 10th Intl. In Situ and On-Site Bioremediation Symp. 40.Google Scholar
  148. Lewandowski, I., Schmidt, U., Londo, M., and Faaij, A. 2006. The economic value of the phytoremediation function – assessed by the example of cadmium remediation by willow (Salix ssp). Agric. Syst. 89:68–89.CrossRefGoogle Scholar
  149. Leyval, C., Turnau, K., and Haselwandter, K. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153.CrossRefGoogle Scholar
  150. Leyval, C., Joner, E. J., del Val, C., and Haselwandter, K. 2002. Potential of arbuscular mycorrhizal fungi for bioremediation. In: Mycorrhizal technology in agriculture, eds S. Gianinazzi, H. Schuepp, J. M. Barea, and K. Haselwandter. Basel: Birkhauser Verlag, pp. 175–186.Google Scholar
  151. Li, M. S., Luo, Y. P., and Su, Z. Y. 2007. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environ. Pollut. 147:68–175.CrossRefGoogle Scholar
  152. Liang, H. M., Lin, T. H., Chiou, J. M., and Yeh, K. C. 2009. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environ. Pollut. 157:1945–1952.CrossRefGoogle Scholar
  153. Lodewyckx, C., Taghavi, S., Mergeay, M., Vangronsveld, J., Clijsters, H., and Lelie, D. 2001. The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. Int. J. Phytoremediation 3:173–187.CrossRefGoogle Scholar
  154. Magrisso, S., Erel, Y., and Belkin, S. 2008. Microbial reporters of metal bioavailability. Microb. Biotechnol. 1:320–330.CrossRefGoogle Scholar
  155. Malcova, R., Vosatka, M., and Gryndler, M. 2003. Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Appl. Soil Ecol. 23:55–67.CrossRefGoogle Scholar
  156. Martínez, M., Bernal, P., Almela, C., Velez, D., Garcia-Augustin, P., Serrano, R., and Navarro-Avino, J. 2006. An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485.CrossRefGoogle Scholar
  157. McGrath, S. P., Shen, Z. G., and Zhao, F. J. 1997. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188:153–159.CrossRefGoogle Scholar
  158. McGrath, S. P., Zhao, J., and Lombi, E. 2002. Phytoremediation of metals, metalloids, and radionuclides. Adv. Agron. 75:1–56.CrossRefGoogle Scholar
  159. McLaren, R. 1998. Assessment of heavy metal contaminations of soils using sequential fractionations, 16ème Congrès mondial de Science du Sol, Montpellier, 20–26 août, No. 120.Google Scholar
  160. Medina, A., Vassileva, M., Barea, J. M., and Azcon, R. 2006. The growth-enhancement of clover by Aspergillus-treated sugar beet waste and Glomus mosseae inoculation in Zn contaminated soil. Appl. Soil Ecol. 33:87–98.CrossRefGoogle Scholar
  161. Melnitchouck, A., Leinweber, P., Eckhardt, K. U., and Beese, R. 2005. Qualitative differences between day- and night-time rhizodeposition in maize (Zea mays L.) as investigated by pyrolysis-field ionization mass spectrometry. Soil Biol. Biochem. 37:155–162.CrossRefGoogle Scholar
  162. Mench, M., Morel, J. L., and Guckert, A. 1987. Metal binding properties of high molecular weight soluble exudates from maize (Zea mays L.) roots. Biol. Fertil. Soils 3:165–169.CrossRefGoogle Scholar
  163. Miller, R. M. 1995. Biosurfactant-facilitated remediation of metal-contaminated soils. Environ. Health Perspect. 103:59–62.CrossRefGoogle Scholar
  164. Mirabello, S. 2006. Influence of siderophore producing bacteria and organic ligands on phase distribution of cadmium and its uptake by Brassica napus in the presence of goethite. MS thesis. New York: Cornell University.Google Scholar
  165. Mitsch, W. J. and Jørgensen, S. E. 2004. Ecological engineering and ecosystem restoration. New York: John Wiley & Sons.Google Scholar
  166. Mohan, S. V., Sirisha, K., Rao, R. S., and Sarma, P. N. 2007. Bioslurry phase remediation of chlorpyrifos contaminated soil: process evaluation and optimization by Taguchi design of experimental (DOE) methodology. Ecotoxicol. Environ. Saf. 68:252–262.CrossRefGoogle Scholar
  167. Moreno, D. A., Villora, G., Ruiz, J. M., and Romero, L. 2003. Growth conditions, elemental accumulation and induced physiological changes in Chinese cabbage. Chemosphere 52:1031–1040.Google Scholar
  168. Mrozik, A. and Piotrowska-Seget, Z. 2010. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol. Res. 165:363–375.Google Scholar
  169. Mulligan, C. N., Yong, R. N., and Gibbs, B. F. 1999a. Removal of heavy metals from contaminated soil and sediments using the biosurfactant surfactin. J. Soil Contam. 8:231–254.CrossRefGoogle Scholar
  170. Mulligan, C. N., Yong, R. N., Gibbs, B. F., James, S., and Bennett, H. P. J. 1999b. Metal removal from contaminated soils and sediments by biosurfactants surfactin. Environ. Sci. Technol. 33:3812–3820.CrossRefGoogle Scholar
  171. Nacamulli, C., Bevivino, A., Dalmastri, C., Tabacchioni, S., and Chiarini, L. 1997. Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MCI 7. FEMS Microbiol. Ecol. 23:183–193.CrossRefGoogle Scholar
  172. Ngiam, L. S. and Lim, P. E. 2000. Speciation patterns of heavy metals in tropical estuarine anoxic and oxidized sediments by different sequential extraction schemes. Sci. Total Environ. 275:53–61.CrossRefGoogle Scholar
  173. Odum, H. T. 1962. Ecological tools and their use. Man and the ecosystem. In: Conference of the suburban forest and ecology, eds P. E. Waggoner and J. D. Ovington, pp. 57–75.Google Scholar
  174. Pérez, A. L. and Anderson, K. M. 2009. DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications. Sci. Total Environ. 407:5096–5103.CrossRefGoogle Scholar
  175. Pilon-Smits, E. 2005. Phytoremediation. Annu. Rev. Plant Biol. 56:15–39.CrossRefGoogle Scholar
  176. Plangklang, P. and Reungsang, A. 2009. Bioaugmentation of carbofuran residues in soil using Burkholderia cepacia PCL3 adsorbed on agricultural residues. Int. Biodeterior. Biodegradation 63:515–522.CrossRefGoogle Scholar
  177. Pulford, I. D. and Watson, C. 2003. Phytoremediation of heavy metal-contaminated land by trees – a review. Environ. Int. 29:529–540.CrossRefGoogle Scholar
  178. Rai, U. N., Pandey, K., Sinha, S., Singh, A., Saxena, R., and Gupta, D. K. 2004. Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and Rhizobium inoculation. Environ. Int. 30:293–300.CrossRefGoogle Scholar
  179. Rajkumar, M., Ae, N., and Freitas, H. 2009. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160.CrossRefGoogle Scholar
  180. Rao, R. S., Kumar, C. G., Prakasham, R. S., and Hobbs, P. J. 2008. The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal. Biotechnol. J. 3:510–23.CrossRefGoogle Scholar
  181. Raskin, I., Kumar, P. B. A. N., Dushenkov, S., and Salt, D. E. 1994. Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol. 5:285–290.CrossRefGoogle Scholar
  182. Rasmussen, L. D., Sorensen, S. J., Turner, R. R., and Barkay, T. 2000. Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol. Biochem. 32:639–646.CrossRefGoogle Scholar
  183. Reeves, R. D. and Baker, A. J. M. 2000. Mechanisms of metal hyperaccumulation in plants. In: Phytoremediation of toxic metals: using plants to clean-up the environment, eds I. Raskin and B. D. Ensley. New York: John Wiley & Sons, pp. 193–229.Google Scholar
  184. Regvar, M., Vogel-Mikus, K., Kugonic, N., Turk, B., and Batic, F. 2006. Vegetational and mycorrhizal successions at a metal polluted site: indications for the direction of phytostabilisation? Environ. Pollut. 144:976–984.CrossRefGoogle Scholar
  185. Robinson, B. H., Banuelos, G., Conesa, H. M., Evangelou, M. W. H., and Schulin, R. 2009. The phytomanagement of trace elements in soil. Crit. Rev. Plant Sci. 28:240–266.CrossRefGoogle Scholar
  186. Rodrigues, J. L. M., Aiello, M. R., Urbance, J. W., Tsoi, T. V., and Tiedje, J. M. 2002. Use of both 16S rRNA and engineered functional genes with real-time PCR to quantify an engineered, PCB-degrading Rhodococcus in soil. J. Microbiol. Methods 51:181–189.CrossRefGoogle Scholar
  187. Salt, D. E. and Kramer, U. 2000. Mechanisms of metal hyperaccumulation in plants. In: Phytoremediation of toxic metals: using plants to clean-up the environment, eds I. Raskin and B. D. Ensley. New York: John Wiley & Sons, pp. 231–246.Google Scholar
  188. Sas-Nowosielska, A., Kucharski, R., Malkowski, E., Pogrzeba, M., Kuperberg, J. M., and Krynski, K. 2004. Phytoextraction crop disposal – an unsolved problem. Environ. Pollut. 128:373–379.CrossRefGoogle Scholar
  189. Sayer, J. A., Cotter-Howells, J. D., Watson, C., Hillier, S., and Gadd, G. M. 1999. Lead mineral transformation by fungi. Curr. Biol. 9:691–694.CrossRefGoogle Scholar
  190. Scheckel, K. G., Ryan, J. A., Allen, D., and Lescano, N. V. 2005. Determining speciation of Pb in phosphate-amended soils: method limitations. Sci. Total Environ. 350:261–272.CrossRefGoogle Scholar
  191. Semple, K. T., Doick, K. J., Burauel, P., Craven, A., Jones, K. C., and Harms, H. 2004. Defining bioavailability and bioaccessibility for the risk assessment and remediation of soils and sediment is complicated. Environ. Sci. Technol. 38:209A–212A.CrossRefGoogle Scholar
  192. Shann, J. R. 1995. The role of plants and plant/microbial systems in the reduction of exposure. Environ. Health Perspect. 103:13–15.CrossRefGoogle Scholar
  193. Sharma, A. and Johri, B. N. 2003a. Combat of iron-deprivation through a plant growth promoting fluorescent Pseudomonas strain GRP3A in mung bean (Vigna radiata L. Wilzeck). Microbiol. Res. 158:77–81.CrossRefGoogle Scholar
  194. Sharma, A. and Johri, B. N. 2003b. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol. Res. 158:243–248.CrossRefGoogle Scholar
  195. Shen, Z. G., Li, X. D., Wang, C. C., Chen, H. M., and Chua, H. 2002. Lead phytoextraction from contaminated soil with high-biomass plant species. J. Environ. Qual. 31:1893–1900.CrossRefGoogle Scholar
  196. Sheng, X. F., Xia, J. J. Jiang, C. Y., He, L. Y., and Qian, M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Pollut. 156:1164–1170.CrossRefGoogle Scholar
  197. Shenker, M., Fan, T. W. M., and Crowley, D. E. 2001. phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. J. Environ. Qual. 30:2091–2098.CrossRefGoogle Scholar
  198. Singer, A. C., van der Gast, C. J., and Thompson, I. P. 2005. Perspectives and vision for strain selection in bioaugmentation. Trends Biotechnol. 23:74–77.CrossRefGoogle Scholar
  199. Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., and Jain, R. K. 2003. Phytoremediation: an overview of metallic ion decontamination from soil. Appl. Microbiol. Biotechnol. 61:405–412.Google Scholar
  200. Singh, B. K., Munro, S., Reid, E., Ord, B., Potts, J. M., Paterson, E., and Millard, P. 2006. Investigating microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods. Eur. J. Soil Sci. 57:72–82.CrossRefGoogle Scholar
  201. Sirguey, C., Christophe, S., and Morel, J. L. 2006. Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation. Int. J. Phytoremediation 8:149–161.CrossRefGoogle Scholar
  202. Siripattanakul, S., Wirojanagud, W., McEvoy, J. M., Casey, F. X. M., and Khan, E. 2009. A feasibility study of immobilized and free mixed culture bioaugmentation for treating atrazine in infiltrate. J. Hazard. Mater. 168:1373–1379.CrossRefGoogle Scholar
  203. Smith, J. A. C., Harper, F. A., Leighton, R. S., Thompson, I. P., Vaughan, D. J., and Baker, A. J. M. 1999. Comparative analysis of metal uptake, transport and sequestration in hyperaccumulator plants. In: Proc. 5th Intl. Conf. on the biogeochemistry of trace elements, Vienna, pp. 22–23.Google Scholar
  204. Srivastava, S., Srivastava, S., Prakash, S., and Srivastava, M. M. 1998. Fate of trivalent chromium in presence of organic acids: a hydroponic study on the tomato plant. Chem. Spec. Bioavail. 10:147–150.CrossRefGoogle Scholar
  205. Tack, F. M. G., Vossius, H. A. H., and Verloo, M. G. 1996. A comparison between sediment metal fractions, obtained from sequential extraction and estimated from single extractions. Int. J. Environ. Anal. Chem. 63:61–66.CrossRefGoogle Scholar
  206. Tani, K., Muneta, M., Nakamura, K., Shibuya, K., and Nasu, M. 2002. Monitoring of Ralstonia eutropha KT1 in groundwater in an experimental bioaugmentation field by in situ PCR. Appl. Environ. Microbiol. 68:412–416.CrossRefGoogle Scholar
  207. Thompson, I. P., van der Gast, C. J., Ciric, L., and Singer, A. C. 2005. Bioaugmentation for bioremediation: the challenge of strain selection. Environ. Microbiol. 7:909–915.CrossRefGoogle Scholar
  208. Tibazarwa, C., Corbisier, P., Mench, M., Bossus, A., Solda, A., Mergeay, M., Wyns, L., and van der Lelie, D. 2001. A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ. Pollut. 113:19–26.CrossRefGoogle Scholar
  209. Toler, H. D., Morton, J. B., and Cumming, J. R. 2005. Growth and Metal Accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water Air Soil Pollut. 164:155–172.CrossRefGoogle Scholar
  210. Unge, A., Tombolini, R., Molbak, L., and Jansson, J. K. 1999. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl. Environ. Microbiol. 65:813–821.Google Scholar
  211. Valix, M., Usai, F., and Malik, R. 2001. Fungal bio-leaching of low grade laterite ores. Miner. Eng. 14:197–203.CrossRefGoogle Scholar
  212. Valls, M. and Lorenzo, V. 2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26:327–338.Google Scholar
  213. van Ranst, E., Verloo, M., Demeyer, A., and Pauwels, J. M. 1999. Manual for the soil chemistry and fertility laboratory. Gent: Faculty Agricultural and Applied Biological Sciences, Ghent University.Google Scholar
  214. van Veen, J. A., van Overbeek, L. S., and van Elsas, J. D. 1997. Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev. 61:121–135.Google Scholar
  215. Vansuyt, G. R., Robin, A. S., Briat, J. F., Curie, C., and Lemanceau, P. 2007. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol. Plant Microbe Interact. 20:441–447.CrossRefGoogle Scholar
  216. Verstraete, W., Wittelbolle, L., Heylen, K., Vanparys, B., de Vos, P., van de Wiele, T., and Boon, N. 2007. Microbial resource management: the road to go for environmental biotechnology. Eng. Life Sci. 7:117–126.CrossRefGoogle Scholar
  217. Visca, P., Colotti, G., Serino, L., Verzili, D., Orsi, N., and Chiancone, E. 1992. Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore–metal complexes. Appl. Environ. Microbiol. 58:2886–2893.Google Scholar
  218. Vivas, A., Voros, I., Biro, B., Campos, E., Barea, J. M., and Azcon, R. 2003. Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ. Pollut. 126:179–189.CrossRefGoogle Scholar
  219. Vivas, A., Biro, B., Ruiz-Lozano, J. M., Barea, J. M., and Azcon, R. 2006. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1533.CrossRefGoogle Scholar
  220. Vogel, T. M. and Walter, M. V. 2001. Bioaugmentation. In: Manual of environmental microbiology, eds. C. J. Hurst, R. L. Crawford, G. R. Knudsen, M. J. McInerney, and L. D. Stetzenbach. Washington: American Society for Microbiology Press, pp. 952–959.Google Scholar
  221. Wang, Y., Brown, H. N., Crowley, D. E., and Szaniszlo, P. J. 1993. Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ. 16:579–585.CrossRefGoogle Scholar
  222. Wang, W. S., Shan, X. Q., Wen, B., and Zhang, S. Z. 2003. Relationship between the extractable metals from soils and metals taken up by maize roots and shoots. Chemosphere 53:523–530.CrossRefGoogle Scholar
  223. Wang, F. Y., Lin, X. G., and Yin, R. 2007. Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia 51:99–109.CrossRefGoogle Scholar
  224. Wang, Y. P., Li, Q. B., Shi, J. Y., Lin, Q., Chen, X. C., Wu, W., and Chen, Y. X. 2008. Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator. Soil Biol. Biochem. 40:1167–1177.CrossRefGoogle Scholar
  225. Wani, P. A., Khan, M. S., and Zaidi, A. 2007. Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45.CrossRefGoogle Scholar
  226. Wasay, S. A., Barrington, S. F., and Tokunaga, S. F. 1998. Using Aspergillus niger to bioremediate soils contaminated by heavy metals. Bioremediat. J. 2:183–190.Google Scholar
  227. Wei, S., Zhou, Q., and Koval, P. V. 2006. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci. Total Environ. 369:441–446.CrossRefGoogle Scholar
  228. Wenzel, W. W., Bunkowski, M., Puschenreiter, M., and Horak, O. 2003. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ. Pollut. 123:131–138.CrossRefGoogle Scholar
  229. Whiting, S. N., de Souza, M. P., and Terry, N. 2001. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ. Sci. Technol. 35:3144–3150.CrossRefGoogle Scholar
  230. Widada, J., Nojiri, H., and Omor, T. 2002. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl. Microbiol. Biotechnol. 60:45–59.CrossRefGoogle Scholar
  231. Willaert, R. G. and Baron, G. V. 1996. Gel entrapment and micro-encapsulation: methods, applications and engineering principles. London: Freund Publishing House.Google Scholar
  232. Wu, C. H., Wood, T. K., Mulchandani, A., and Chen, W. 2006a. Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl. Environ. Microbiol. 72:1129–1134.CrossRefGoogle Scholar
  233. Wu, Q. T., Deng, J. C., Long, X. X., Morel, J. L., and Schwartz, C. 2006b. Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators. J. Environ. Sci. 18:1113–1118.CrossRefGoogle Scholar
  234. Yang, C. H. and Crowley, D. E. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 66:345–351.CrossRefGoogle Scholar
  235. Zaidi, S., Usmani, S., Singh, B. R., and Musarrat, J. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997.CrossRefGoogle Scholar
  236. Zemberyova, M., Zwaik, A. A. H., and Farkasovska, I. 1998. Sequential extraction for the speciation of some heavy metals in soils. J. Radioanal. Nucl. Chem. 229:56–71.CrossRefGoogle Scholar
  237. Zenk, M. H. 1996. Heavy metal detoxification in higher plants – a review. Gene 179:21–30.CrossRefGoogle Scholar
  238. Zhang, H., Zhao, F. J., Sun, B., Davison, W., and McGrath, S. 2001. A new method to measure effective soil solution concentration predicts copper availability to plants. Environ. Sci. Technol. 35:2602–2607.CrossRefGoogle Scholar
  239. Zhao, F. J., Hamon, R. E., and McLaughlin, M. J. 2001. Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol. 151:613–620.CrossRefGoogle Scholar
  240. Zhu, Y. L., Pilon-Smits, E. A. H., Tarun, A. S., Weber, S. U., Jouanin, L., and Terry, N. 1999. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol. 121:1169–1177.CrossRefGoogle Scholar
  241. Zhuang, X., Chen, J., Shim, H., and Bai, Z. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ. Int. 33:406–413.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Thierry Lebeau
    • 1
    Email author
  • Karine Jézéquel
  • Armelle Braud
  1. 1.IUT Colmar – Dpt Génie Biologique Equipe Dépollution Biologique des Sols, Plate-Forme Technologique AGROSYSTEMESUniversité de Haute-AlsaceColmar cedexFrance

Personalised recommendations