Importance of a Factor VIIIc-Like Glycoprotein Expressed in Capillary Endothelial Cells (eFactor VIIIc) in Angiogenesis

  • Dipak K. Banerjee
  • Caroline M. Oliveira
  • José J. Tavárez
  • Viswa N. Katiyar
  • Subiman Saha
  • Juan A. Martínez
  • Aditi Banerjee
  • Aurymar Sánchez
  • Krishna Baksi
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 705)

Abstract

Factor VIII is a large, 2,332-residue plasma glycoprotein that acts as a regulatory cofactor in the process of blood coagulation [1–3]. It binds to activated factor IX (factor IXa) in the presence of calcium and negatively charged phospholipids at the surface of activated platelets to form a membrane-associated, proteolytically active complex. Upon complex formation, the Vmax of factor IXa is increased by approximately 200,000-fold, promoting the rapid activation of its substrate, the serine protease factor X. The proteolytic conversion of factor X to its active form, factor Xa, is a central control point in the coagulation cascade, leading to activation of thrombin, formation of a fibrin mesh, and establishment of a stable blood clot. The binding of factor VIIIc and other activated proteins to these membrane surfaces allows for localization of the procoagulation process to sites of vascular damage.

Keywords

Angiogenesis Mannosylphospho dolichol synthase Unfolded protein response ER stress Apoptosis Cell cycle N-linked glycoproteins Tunicamycin Lipid-linked oligosaccharide 

References

  1. 1.
    Fay PJ (1999) Regulation of factor VIIIa in the intrinsic factor Xase. Thromb Haemost 82:193–200PubMedGoogle Scholar
  2. 2.
    Kane WH, Davie EW (1988) Blood coagulation factors V and VIII: structural and functional similarities and their relationship to hemorrhagic and thrombotic disorders. Blood 71:539–555PubMedGoogle Scholar
  3. 3.
    Lenting PJ, van Mourik JA, Mertens K (1998) The life cycle of coagulation factor VIII in view of its structure and function. Blood 92:3983–3996PubMedGoogle Scholar
  4. 4.
    Saenko EL, Scandella D (1995) A mechanism for inhibition of factor VIII binding to phospholipid by von Willebrand factor. J Biol Chem 270:13826–13833PubMedCrossRefGoogle Scholar
  5. 5.
    Toole JJ, Knopf JL, Wozney JM, Sultzman LA, Buecker JL, Pittman DD, Kaufman RJ, Brown E, Shoemaker C, Orr EC, Amphlett GW, Foster WB, Coe ML, Knutson GJ, Fass DN, Hewick RM (1984) Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 312:342–347PubMedCrossRefGoogle Scholar
  6. 6.
    Vehar GA, Keyt B, Eaton D, Rodriguez H, O’Brien DP, Rotblat F, Oppermann H, Kock R, Wood WI, Harkins RN, Tuddenhan GD, Lauen RM, Capon DJ (1984) Structure of human factor VIII. Nature 312:337–342PubMedCrossRefGoogle Scholar
  7. 7.
    Baumgartner S, Hofmann K, Chiquest-Ehrismann R, Bucher P (1998) The discoidin domain family revisited: new members from prokaryotes and a homology-based fold prediction. Protein Sci 7:1626–1631PubMedCrossRefGoogle Scholar
  8. 8.
    Pellequer JI, Gale AJ, Griffin JH, Getzoff ED (1998) Homology models of the C domains of blood coagulation factors V and VIII: a proposed membrane binding mode for FV and FVIII C2 domains. Blood Cells Mol Dis 24:448–461PubMedCrossRefGoogle Scholar
  9. 9.
    Gilbert GE, Drinkwater D (1993) Specific membrane binding of factor VIII is mediated by O-phospho-L-serine, a moiety of phosphatidylserine. Biochemistry 32:9577–9585PubMedCrossRefGoogle Scholar
  10. 10.
    Spiegel PC Jr, Jacquemin M, Saint-Remy JM, Stoddard BL, Pratt KP (2001) Plenary paper: structure of a factor VIII C2-domain–immunoglobulin G4? Fab complex: identification of an inhibitory antibody epitope on the surface of factor VIII. Blood 98:13–19PubMedCrossRefGoogle Scholar
  11. 11.
    Banerjee DK, Ornberg RL, Youdim MB, Heldman E, Pollard HB (1985) Endothelial cells from bovine adrenal medulla develop capillary-like growth patterns in culture. Proc Natl Acad Sci USA 82(14):4702–4706PubMedCrossRefGoogle Scholar
  12. 12.
    Banerjee DK (1988) Microenvironment of endothelial cell growth and regulation of protein N-glycosylation. Indian J Biochem Biophys 25:8–13PubMedGoogle Scholar
  13. 13.
    Martinez JA, Torres-Negrón I, Amígo LA, Banerjee DK (1999) Expression of Glc3Man9GlcNAc2-PP-Dol is a prerequisite for capillary endothelial cell proliferation. Cell Mol Biol 45:137–152PubMedGoogle Scholar
  14. 14.
    Martínez JA, Tavárez JJ, Oliveira CM, Banerjee DK (2006) Potentiation of angiogenic switch in capillary endothelial cells by cAMP: a cross-talk between up-regulated LLO biosynthesis and the HSP-70 expression. Glycoconj J 23:209–220PubMedCrossRefGoogle Scholar
  15. 15.
    Banerjee DK, Tavárez JJ, Oliveira CM (1992) Expression of blood clotting factor VIII: C gene in capillary endothelial cells. FEBS Lett 306:33–37PubMedCrossRefGoogle Scholar
  16. 16.
    Eriksson UJ, Lewis NJ, Freinkel N (1984) Growth retardation during early organogenesis in embryos of experimentally diabetic rats. Diabetes 33:281–284PubMedCrossRefGoogle Scholar
  17. 17.
    Susa JB, Neave C, Sehgal P, Singer DB, Zeller WP, Schwartz R (1984) Chronic hyperinsulinemia in the fetal rhesus monkey. Effects of physiologic hyperinsulinemia on fetal growth and composition. Diabetes 33:656–660PubMedCrossRefGoogle Scholar
  18. 18.
    Taub R, Roy A, Diater R, Koontz J (1987) Insulin as a growth factor in rat hepatoma cells stimulation of proto-oncogene expression. J Biol Chem 262:10893–10897PubMedGoogle Scholar
  19. 19.
    Oliveira CM, Banerjee DK (1990) Role of extracellular signaling on endothelial cell proliferation and protein N-glycosylation. J Cell Physiol 144:467–472PubMedCrossRefGoogle Scholar
  20. 20.
    Brush JS, Tavárez-Pagán JJ, Banerjee DK (1991) Insulin and IGF-1 manifest differential effects in a clonal capillary endothelial cell line. Biochem Int 25:537–545PubMedGoogle Scholar
  21. 21.
    Tavarez-Pagan JJ, Oliveira CM, Banerjee DK (2004) Insulin up-regulates a Glc3Man9GlcNAc2-PP-Dol pool in capillary endothelial cells not essential for angiogenesis. Glycoconj J 20:179–188PubMedCrossRefGoogle Scholar
  22. 22.
    Banerjee DK, Vendrell-Ramos M (1993) Is asparagine-linked protein glycosylation an obligatory requirement for angiogenesis? Indian J Biochem Biophys 30:389–394PubMedGoogle Scholar
  23. 23.
    Das SK, Mukherjee S, Banerjee DK (1994) Beta-adrenoreceptors of multiple affinities in a clonal capillary endothelial cell line and its functional implication. Mol Cell Biochem 140:49–54PubMedCrossRefGoogle Scholar
  24. 24.
    Uhr JW, Scheuermann RH, Street NE, Vitetta ES (1997) Cancer dormancy: opportunities for new therapeutic approaches. Nat Med 3:505–509PubMedCrossRefGoogle Scholar
  25. 25.
    Gastl G, Hermann T, Steurer M, Zmija J, Gunsilius E, Unger C, Kraft A (1997) Angiogenesis as a target for tumor treatment. Oncology 54:177–184PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dipak K. Banerjee
    • 1
  • Caroline M. Oliveira
  • José J. Tavárez
  • Viswa N. Katiyar
  • Subiman Saha
  • Juan A. Martínez
  • Aditi Banerjee
  • Aurymar Sánchez
  • Krishna Baksi
  1. 1.Department of Biochemistry, School of MedicineUniversity of Puerto RicoSan JuanPuerto Rico

Personalised recommendations