Non-carbohydrate-Mediated Interaction of Lectins with Plant Proteins

  • Jared Q. Gerlach
  • Michelle Kilcoyne
  • Seron Eaton
  • Veer Bhavanandan
  • Lokesh Joshi
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 705)


Glycosylation is the most common posttranslational modification of proteins and plays diverse roles in numerous biological processes, including fertilization, development, differentiation, inflammation, cancer metastasis, and host–pathogen/­parasite interactions. A number of glycosylated proteins are bioactive molecules of medical/therapeutic or other commercial interest and are currently produced by recombinantly transformed cells and organisms. Among non-animal expression systems, plant cells and transgenic plants are considered an attractive alternative system for recombinant human and animal glycoproteins. The advantages of using plants for the production of commercially important glycosylated proteins include lower manufacturing costs and a reduced risk of transmitting mammalian pathogens [11, 27]. However, a major roadblock in the use of plants for this purpose is the lack of available information on N- and O-linked glycans in plants and specifically those in the endogenous plant glycosylation pathways [9, 31]. Thus, gathering detailed structural information on plant-derived glycoproteins is of utmost importance.


Plant protein Lectins Glycosylation Carbohydrate Non-carbohydrate-mediated binding Non-mammalian Glycoprotein 



Lokesh Joshi and Jared Q. Gerlach would like to thank Professors Hans-Joachim Gabius and Harold Rudiger for their helpful discussions. The authors would like to acknowledge the Wallace Research Foundation and the Biodesign Institute at Arizona State University for their financial support.


  1. 1.
    Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrest H, Sprenger N (2005) Glycoprofiling with microarrays of glycoconjugates and lectins. Glycobiology 15:31–41PubMedCrossRefGoogle Scholar
  2. 2.
    Bolmer SD, Davidson EA (1981) Preparation and properties of a glycoprotein associated with malignancy. Biochemistry 20:1047–1053PubMedCrossRefGoogle Scholar
  3. 3.
    Broekaert W, Nsimba-Lubaki M, Peeters B, Peumans WJ (1984) A lectin from elder (Sambucus nigra L.) bark. Biochem J 221:163–169PubMedGoogle Scholar
  4. 4.
    Dabelsteen E (1996) Cell surface carbohydrates as prognostic indicators in human carcinomas. J Pathol 179:358–369PubMedCrossRefGoogle Scholar
  5. 5.
    Dai Z, Kawade AN, Xiang Y, La Belle JT, Gerlach J, Bhavanandan VP, Joshi L, Wang J (2006) Nano-particle-based sensing of glycan-lectin interactions. J Am Chem Soc 128:10018–10019PubMedCrossRefGoogle Scholar
  6. 6.
    Duk M, Lisowska E, Wu JH, Wu AM (1994) The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal Biochem 221:266–272PubMedCrossRefGoogle Scholar
  7. 7.
    Durand G, Seta N (2000) Protein glycosylation and diseases: blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring. Clin Chem 46:795–805PubMedGoogle Scholar
  8. 8.
    Goel M, Jain D, Kaur KJ, Kenoth R, Maiya BG, Swamy MJ, Salunke DM (2001) Functional equality in the absence of structural similarity: an added dimension to molecular mimicry. J Biol Chem 276:39277–39281PubMedCrossRefGoogle Scholar
  9. 9.
    Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181PubMedCrossRefGoogle Scholar
  10. 10.
    Jelinek R, Kolusheva S (2004) Carbohydrate sensors. Chem Rev 104:5987–6015PubMedCrossRefGoogle Scholar
  11. 11.
    Joshi L, Lopez LC (2005) Bioprocessing in plants for engineered proteins. Curr Opin Plant Biol 8:223–226PubMedCrossRefGoogle Scholar
  12. 12.
    Kilcoyne M, Shah M, Gerlach JQ, Bhavanandan V, Nagaraj V, Smith AD, Fujiyama K, Sommer U, Costello CE, Olszewski N, Joshi L (2009) O-glycosylation of protein subpopulations in alcohol-extracted rice proteins. J Plant Physiol 166:219–232PubMedCrossRefGoogle Scholar
  13. 13.
    Komath S, Kavitha M, Swamy MJ (2006) Beyond carbohydrate binding: new directions in plant lectin research. Org Biomol Chem 4:973–988PubMedCrossRefGoogle Scholar
  14. 14.
    Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2:851–855PubMedCrossRefGoogle Scholar
  15. 15.
    La Belle JT, Gerlach JQ, Svarovsky S, Joshi L (2007) Label-free impedimetric detection of glycan-lectin interactions. Anal Chem 79:6959–6964PubMedCrossRefGoogle Scholar
  16. 16.
    Lee KB, Loganathan D, Merchant ZM, Linhardt RJ (1990) Carbohydrate analysis of glycoproteins: a review. Appl Biochem Biotechnol 23:53–80PubMedCrossRefGoogle Scholar
  17. 17.
    Leriche V, Sibille P, Carpentier B (2000) Use of an enzyme-linked lectinsorbent assay to monitor the shift in polysaccharide composition in bacterial biofilms. Appl Environ Microbiol 66:1851–1856PubMedCrossRefGoogle Scholar
  18. 18.
    Montalto MC, Collard CD, Buras JA, Reenstra WR, McClaine R, Gies DR, Rother RP, Stahl GL (2001) A keratin peptide inhibits mannose-binding lectin. J Immunol 15:4148–4153Google Scholar
  19. 19.
    Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 6:1–4CrossRefGoogle Scholar
  20. 20.
    Puri KD, Gopalkrishnan B, Surolia A (1992) Carbohydrate binding specificity of the Tn antigen binding lectin from Vicia villosa seeds. FEBS Lett 312:208–212PubMedCrossRefGoogle Scholar
  21. 21.
    Raman R, Venkataraman M, Ramakrishnan S, Lang W, Ragurm S, Sasisekharan R (2006) Advancing glycomics: implementation strategies at the consortium for functional glycomics. Glycobiology 16:82R–90RPubMedCrossRefGoogle Scholar
  22. 22.
    Rudiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18:589–613PubMedCrossRefGoogle Scholar
  23. 23.
    Sharon N (2007) Lectins: carbohydrate-specific reagents and biological recognition molecules. J Biol Chem 282:2753–2764PubMedCrossRefGoogle Scholar
  24. 24.
    Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R–62RPubMedCrossRefGoogle Scholar
  25. 25.
    Shibuya N, Goldstein IJ, Broekaert WF, Nismba-Lubaki M, Peeters B, Peumans WJ (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the NeuNAc(alpha 2-6)Gal/GalNAc sequence. J Biol Chem 262:1596–1601PubMedGoogle Scholar
  26. 26.
    Shin I, Park S, Lee M (2005) Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chem Eur J 11:2894–2901CrossRefGoogle Scholar
  27. 27.
    Tekoah Y, Ko K, Koprowski H, Harvey DJ, Wormald MR, Dwek RA, Rudd PM (2004) Controlled glycosylation of therapeutic antibodies in plants. Arch Biochem Biophys 426:266–278PubMedCrossRefGoogle Scholar
  28. 28.
    Tollefsen S, Kornfeld S (1983) The B4 lectin from Vicia villosa seeds interacts with N-acetylgalactosamine residues alpha-linked to serine or threonine residues in cell surface glycoproteins. J Biol Chem 258:5165–5171PubMedGoogle Scholar
  29. 29.
    Turnbull JE, Field RA (2007) Emerging glycomics technologies. Nat Chem Biol 3:74–77PubMedCrossRefGoogle Scholar
  30. 30.
    Umemoto J, Bhavanandan VP, Davidson EA (1977) Purification and properties of an endo-alpha-N-acetyl-d-galactosaminidase from Diplococcus pneumoniae. J Biol Chem 252:8609–8614PubMedGoogle Scholar
  31. 31.
    Wilson IBH (2002) Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol 12:569–577PubMedCrossRefGoogle Scholar
  32. 32.
    Yamamoto K, Ito S, Yasukawa F, Konami Y, Matsumoto N (2004) Measurement of the carbohydrate-binding specificity of lectins by a multiplexed bead-based flow cytometric assay. Anal Biochem 336:28–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jared Q. Gerlach
    • 1
  • Michelle Kilcoyne
  • Seron Eaton
  • Veer Bhavanandan
  • Lokesh Joshi
  1. 1.Glycoscience Group, National Centre for Biomedical Engineering ScienceNational University of IrelandGalwayIreland

Personalised recommendations